Lightweight deep learning for malaria parasite detection using cell-image of blood smear images

被引:19
|
作者
Alqudah A. [1 ]
Alqudah A.M. [2 ]
Qazan S. [1 ]
机构
[1] Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Shafiq Irshidat Street, Irbid
[2] Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Shafiq Irshidat Street, Irbid
关键词
Blood smear; Classification; Computer-aided diagnosis; Convolutional neural networks; Deep learning; Malaria;
D O I
10.18280/ria.340506
中图分类号
学科分类号
摘要
Malaria is an infectious disease that is caused by the plasmodium parasite which is a single-celled group. This disease is usually spread employing an infected female anopheles mosquito. Recent statistics show that in 2017 there were only around 219 million recorded cases and about 435,000 deaths were reported due to this disease and more than 40% of the global population is at risk. Despite this, many image processing fused with machine learning algorithms were developed by researchers for the early detection of malaria using blood smear images. This research used a new CNN model using transfer learning for classifying segmented infected and Uninfected red blood cells. The experimental results show that the proposed architecture success to detect malaria with an accuracy of 98.85%, sensitivity of 98.79%, and a specificity of 98.90% with the highest speed and smallest input size among all previously used CNN models. © 2020 Lavoisier. All rights reserved.
引用
收藏
页码:571 / 576
页数:5
相关论文
共 50 条
  • [1] Malaria Parasite Detection on Microscopic Blood Smear Images with Integrated Deep Learning Algorithms
    Jones, Christonson Berin
    Murugamani, Chakravarthi
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (02) : 170 - 179
  • [2] Deep Malaria Parasite Detection in Thin Blood Smear Microscopic Images
    Maqsood, Asma
    Farid, Muhammad Shahid
    Khan, Muhammad Hassan
    Grzegorzek, Marcin
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 19
  • [3] Malaria Parasite Detection From Peripheral Blood Smear Images Using Deep Belief Networks
    Bibin, Dhanya
    Nair, Madhu S.
    Punitha, P.
    IEEE ACCESS, 2017, 5 : 9099 - 9108
  • [4] Embedded System-Based Malaria Detection From Blood Smear Images Using Lightweight Deep Learning Model
    Salam, Abdus
    Hasan, S. M. Nahid
    Karim, Md. Jawadul
    Anower, Shamim
    Nahiduzzaman, Md
    Chowdhury, Muhammad E. H.
    Murugappan, M.
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (06)
  • [5] Image Analysis for Malaria Parasite Detection from Microscopic Images of Thick Blood Smear
    Dave, Ishan R.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, : 1303 - 1307
  • [6] An automated malaria cells detection from thin blood smear images using deep learning
    Sukumarran, D.
    Hasikin, K.
    Khairuddin, Mohd
    Ngui, R.
    Sulaiman, Wan
    Vythilingam, I.
    Divis, P. C. S.
    TROPICAL BIOMEDICINE, 2023, 40 (02) : 208 - 219
  • [7] Optimal Machine Learning Based Automated Malaria Parasite Detection and Classification Model Using Blood Smear Images
    Kundu, Tamal Kumar
    Anguraj, Dinesh Kumar
    TRAITEMENT DU SIGNAL, 2023, 40 (01) : 91 - 99
  • [8] Object Detection Technique For Malaria Parasite In Thin Blood Smear Images
    Pattanaik, P. A.
    Swarnkar, Tripti
    Sheet, Debdoot
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 2120 - 2123
  • [9] DLRFNet: deep learning with random forest network for classification and detection of malaria parasite in blood smear
    Murmu, Anita
    Kumar, Piyush
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (23) : 63593 - 63615
  • [10] Unsupervised Deep Learning CAD Scheme for the Detection of Malaria in Blood Smear Microscopic Images
    Pattanaik, Priyadarshini Adyasha
    Mittal, Mohit
    Khan, Mohammad Zubair
    IEEE ACCESS, 2020, 8 : 94936 - 94946