Demands for high-strength flexible electrodes have significantly increased across various fields, especially in wearable electronics. Inspired by the strong integrated layered structure of the natural nacre via multi-bonding interactions, we report the fabrication of the strong integrated nacre-like composite films based on pre-polymerised polydopamine and polyethyleneimine cross-linked MXene layers (p-DEM), achieving the synergic effect of hydrogen bonding, covalent bonding and electrostatic interactions. As a result, a high-level tensile strength of similar to 302 MPa, 10.8 times higher than that of the plain MXene film, is obtained for the prepared p-DE0.5M composite film. Meanwhile, the composite film also delivers superior energy storage (similar to 1218F cm(-3) at 5 mV s(-1)) and rate performances (capacitance retention of 81.3% at 1000 mV s(-1)). To demonstrate the practical application of the composite films, a symmetrical supercapacitor based on p-DE0.5M electrodes is assembled, which shows stable energy storage performances under different deformation states such as bending angles at 0, 60, 90 and 180 degrees, or withstand repeated bending times (1000 cycles). This type of multi-bonding interactions induced strong integrated MXene assembly may promote the wide applications of MXene-based films in flexible electronics, artificial intelligence, and tissue engineering, to name a few.