Quantum Fuzzy Support Vector Machine for Binary Classification

被引:0
|
作者
Huang X. [1 ,2 ]
Zhang S. [1 ,2 ]
Lin C. [1 ,2 ]
Xia J. [3 ]
机构
[1] School of Cybersecurity, Chengdu University of Information Technology, Chengdu
[2] Sichuan Key Laboratory of Advanced Cryptography and System Security, Chengdu
[3] International Business Machines Corporation (IBM), New York
来源
基金
中国国家自然科学基金;
关键词
fuzzy support vector machine (FSVM); quantum computing; Quantum fuzzy support vector machine (QFSVM);
D O I
10.32604/csse.2023.032190
中图分类号
学科分类号
摘要
In the objective world, how to deal with the complexity and uncertainty of big data efficiently and accurately has become the premise and key to machine learning. Fuzzy support vector machine (FSVM) not only deals with the classification problems for training samples with fuzzy information, but also assigns a fuzzy membership degree to each training sample, allowing different training samples to contribute differently in predicting an optimal hyperplane to separate two classes with maximum margin, reducing the effect of outliers and noise, Quantum computing has super parallel computing capabilities and holds the promise of faster algorithmic processing of data. However, FSVM and quantum computing are incapable of dealing with the complexity and uncertainty of big data in an efficient and accurate manner. This paper research and propose an efficient and accurate quantum fuzzy support vector machine (QFSVM) algorithm based on the fact that quantum computing can efficiently process large amounts of data and FSVM is easy to deal with the complexity and uncertainty problems. The central idea of the proposed algorithm is to use the quantum algorithm for solving linear systems of equations (HHL algorithm) and the least-squares method to solve the quadratic programming problem in the FSVM. The proposed algorithm can determine whether a sample belongs to the positive or negative class while also achieving a good generalization performance. Furthermore, this paper applies QFSVM to handwritten character recognition and demonstrates that QFSVM can be run on quantum computers, and achieve accurate classification of handwritten characters. When compared to FSVM, QFSVM's computational complexity decreases exponentially with the number of training samples. © 2023 CRL Publishing. All rights reserved.
引用
收藏
页码:2783 / 2794
页数:11
相关论文
共 50 条
  • [1] An New Fuzzy Support Vector Machine for Binary Classification
    Zhang, Rui
    Liu, Tongbo
    Zheng, Mingwen
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 2856 - 2861
  • [2] Dense fuzzy support vector machine to binary classification for imbalanced data
    Wang, Qingling
    Zheng, Jian
    Zhang, Wenjing
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 9643 - 9653
  • [3] Iterative fuzzy support vector machine classification
    Shilton, Alistair
    Lai, Daniel T. H.
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1396 - 1401
  • [4] Entropy-Based Fuzzy Twin Bounded Support Vector Machine for Binary Classification
    Chen, Sugen
    Cao, Junfeng
    Huang, Zhong
    Shen, Chuansheng
    IEEE ACCESS, 2019, 7 : 86555 - 86569
  • [5] Quantum machine learning for support vector machine classification
    Kavitha, S. S.
    Kaulgud, Narasimha
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (02) : 819 - 828
  • [6] Quantum machine learning for support vector machine classification
    S. S. Kavitha
    Narasimha Kaulgud
    Evolutionary Intelligence, 2024, 17 : 819 - 828
  • [7] Quantum support vector machine for multi classification
    Xu, Li
    Zhang, Xiao-yu
    Li, Ming
    Shen, Shu-qian
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (07)
  • [8] Fuzzy support vector machine for PolSAR image classification
    Ke, Hongxia
    Liu, Guodong
    Pan, Guobing
    ADVANCES IN CIVIL INFRASTRUCTURE ENGINEERING, PTS 1 AND 2, 2013, 639-640 : 1162 - 1167
  • [9] A fuzzy classification method based on support vector machine
    He, Q
    Wang, XZ
    Xing, HJ
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1237 - 1240
  • [10] Image Classification Based on Fuzzy Support Vector Machine
    Li, Jianming
    Huang, Shuguang
    He, Rongsheng
    Qian, Kunming
    PROCEEDINGS OF THE 2008 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 1, 2008, : 68 - 71