Parallel network component analysis technique for gene regulatory network inference

被引:0
|
作者
Elsayad, Dina [1 ]
Hamad, Safwat [1 ]
Shedeed, Howida A. [1 ]
Tolba, Mohamed F. [1 ]
机构
[1] Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
关键词
Inference engines;
D O I
暂无
中图分类号
学科分类号
摘要
The inference of gene regulatory network has a vital role in understanding the topological order of gene interactions, in addition to how genes are affected by the others genes. One of gene regulatory network techniques is Network Component analysis. The primary drawback of Network Component analysis technique is the intensive computation and time consummation. To avoid these drawbacks, parallel techniques are required. This work presents a parallel technique for gene regulatory network inference; referred as Improved Parallel Computation for Sparse Network Component Analysis (iPSparseNCA) algorithm. To improve the performance of network component analysis technique, iPSparseNCA implements a hybrid parallelism computational model that uses cannon's algorithm for the matrix operations. The performance of iPSparseNCA is measured using different genetic datasets. The computational results indicate that iPSparseNCA achieved high computational speedup, where the achieved speedup reached 1359.85 on 256 processing nodes. These computational results indicate that iPSparseNCA achieved super linear speedup, where, the achieved speedup exceeds the number of used processing nodes. Furthermore, iPSparseNCA has O (N2) time instead of O (M3N2) time for the sequential technique, where M is the number of genes in the dataset and N is the number of the samples. © 2021 John Wiley & Sons Ltd.
引用
收藏
相关论文
共 50 条
  • [1] Parallel network component analysis technique for gene regulatory network inference
    Elsayad, Dina
    Hamad, Safwat
    Shedeed, Howida A.
    Tolba, Mohamed F.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (24):
  • [2] PFastNCA: Parallel Fast Network Component Analysis for Gene Regulatory Network
    Elsayad, Dina
    Ali, A.
    Shedeed, Howida A.
    Tolba, M. F.
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 585 - 594
  • [3] Motif-directed network component analysis for regulatory network inference
    Wang C.
    Xuan J.
    Chen L.
    Zhao P.
    Wang Y.
    Clarke R.
    Hoffman E.
    BMC Bioinform., 2008, SUPPL. 1 (Suppl 1):
  • [4] Nonnegative Network Component Analysis by Linear Programming for Gene Regulatory Network Reconstruction
    Chang, Chunqi
    Ding, Zhi
    Hung, Yeung Sam
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 395 - +
  • [5] An Efficient Convex Nonnegative Network Component Analysis for Gene Regulatory Network Reconstruction
    Dai, Jisheng
    Chang, Chunqi
    Ye, Zhongfu
    Hung, Yeung Sam
    PATTERN RECOGNITION IN BIOINFORMATICS, PROCEEDINGS, 2009, 5780 : 56 - +
  • [6] Deep Neural Network for Supervised Inference of Gene Regulatory Network
    Daoudi, Meroua
    Meshoul, Souham
    MODELLING AND IMPLEMENTATION OF COMPLEX SYSTEMS, 2019, 64 : 149 - 157
  • [7] Inference of Gene Regulatory Network based on Legendre Neural Network
    Yang, Bin
    Liu, Sanrong
    2016 8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY IN MEDICINE AND EDUCATION (ITME), 2016, : 192 - 194
  • [8] An Integrated Gene Regulatory Network Inference Pipeline
    Wang Yong
    Horimoto, Katsuhisa
    Chen Luonan
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 6593 - 6598
  • [9] The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks
    Marouen Ben Guebila
    Tian Wang
    Camila M. Lopes-Ramos
    Viola Fanfani
    Des Weighill
    Rebekka Burkholz
    Daniel Schlauch
    Joseph N. Paulson
    Michael Altenbuchinger
    Katherine H. Shutta
    Abhijeet R. Sonawane
    James Lim
    Genis Calderer
    David G.P. van IJzendoorn
    Daniel Morgan
    Alessandro Marin
    Cho-Yi Chen
    Qi Song
    Enakshi Saha
    Dawn L. DeMeo
    Megha Padi
    John Platig
    Marieke L. Kuijjer
    Kimberly Glass
    John Quackenbush
    Genome Biology, 24
  • [10] The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks
    Ben Guebila, Marouen
    Wang, Tian
    Lopes-Ramos, Camila M. M.
    Fanfani, Viola
    Weighill, Des
    Burkholz, Rebekka
    Schlauch, Daniel
    Paulson, Joseph N. N.
    Altenbuchinger, Michael
    Shutta, Katherine H. H.
    Sonawane, Abhijeet R. R.
    Lim, James
    Calderer, Genis
    van IJzendoorn, David G. P.
    Morgan, Daniel
    Marin, Alessandro
    Chen, Cho-Yi
    Song, Qi
    Saha, Enakshi
    DeMeo, Dawn L. L.
    Padi, Megha
    Platig, John
    Kuijjer, Marieke L. L.
    Glass, Kimberly
    Quackenbush, John
    GENOME BIOLOGY, 2023, 24 (01)