ELU-Net: An Efficient and Lightweight U-Net for Medical Image Segmentation

被引:0
|
作者
Deng, Yunjiao [1 ]
Hou, Yulei [1 ]
Yan, Jiangtao [2 ]
Zeng, Daxing [3 ]
机构
[1] School of Mechanical Engineering, Yanshan University, Qinhuangdao,066004, China
[2] Department of Orthopaedics, First Hospital of Qinhuangdao, Qinhuangdao,066004, China
[3] School of Mechanical Engineering, Dongguan University of Technology, Dongguan,523015, China
关键词
Signal encoding - Network architecture - Semantic Segmentation - Brain - Decoding - Semantics - Medical imaging;
D O I
暂无
中图分类号
学科分类号
摘要
Recent years have witnessed a growing interest in the use of U-Net and its improvement. It is one of the classic semantic segmentation networks with an encoder-decoder architecture and is widely used in medical image segmentation. In the series versions of U-Net, U-Net++ has been developed as an improved U-Net by designing an architecture with nested and dense skip connections, and U-Net 3+ has been developed as an improved U-Net++ by taking advantage of full-scale skip connections and deep supervision on full-scale aggregated feature maps. Each network architecture has its own advantages in the use of the encoder and decoder. In this paper, we propose an efficient and lightweight U-Net (ELU-Net) with deep skip connections. The deep skip connections include same- and large-scale skip connections from the encoder to fully extract the features of the encoder. In addition, the proposed ELU-Net with different loss functions is discussed to improve the effect of brain tumor learning including WT (whole tumor), TC (tumor core) and ET (enhance tumor) and a new loss function DFK is designed. The effectiveness of the proposed method is demonstrated for a brain tumor dataset used in the BraTS 2018 Challenge and liver dataset used in the ISBI LiTS 2017 Challenge. © 2013 IEEE.
引用
收藏
页码:35932 / 35941
相关论文
共 50 条
  • [1] ELU-Net: An Efficient and Lightweight U-Net for Medical Image Segmentation
    Deng, Yunjiao
    Hou, Yulei
    Yan, Jiangtao
    Zeng, Daxing
    IEEE ACCESS, 2022, 10 : 35932 - 35941
  • [2] LFU-Net: A Lightweight U-Net with Full Skip Connections for Medical Image Segmentation
    Deng, Yunjiao
    Wang, Hui
    Hou, Yulei
    Liang, Shunpan
    Zeng, Daxing
    CURRENT MEDICAL IMAGING, 2023, 19 (04) : 347 - 360
  • [3] EdgeMedNet: Lightweight and Accurate U-Net for Implementing Efficient Medical Image Segmentation on Edge Devices
    Liu, Qingliang
    Zhou, Shuai
    Lai, Jinmei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (12) : 4329 - 4333
  • [4] Wavelet U-Net for Medical Image Segmentation
    Ying Li
    Yu Wang
    Tuo Leng
    Wen Zhijie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 800 - 810
  • [5] Medical Image Segmentation based on U-Net: A Review
    Du, Getao
    Cao, Xu
    Liang, Jimin
    Chen, Xueli
    Zhan, Yonghua
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2020, 64 (02)
  • [6] Modified U-Net for cytological medical image segmentation
    Benazzouz, Mourtada
    Benomar, Mohammed Lamine
    Moualek, Youcef
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (05) : 1761 - 1773
  • [7] MIXED TRANSFORMER U-NET FOR MEDICAL IMAGE SEGMENTATION
    Wang, Hongyi
    Xie, Shiao
    Lin, Lanfen
    Iwamoto, Yutaro
    Han, Xian-Hua
    Chen, Yen-Wei
    Tong, Ruofeng
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2390 - 2394
  • [8] Implicit U-Net for Volumetric Medical Image Segmentation
    Marimont, Sergio Naval
    Tarroni, Giacomo
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 : 387 - 397
  • [9] Boundary Aware U-Net for Medical Image Segmentation
    Alahmadi, Mohammad D.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 9929 - 9940
  • [10] Medical Image Segmentation Review: The Success of U-Net
    Azad, Reza
    Aghdam, Ehsan Khodapanah
    Rauland, Amelie
    Jia, Yiwei
    Avval, Atlas Haddadi
    Bozorgpour, Afshin
    Karimijafarbigloo, Sanaz
    Cohen, Joseph Paul
    Adeli, Ehsan
    Merhof, Dorit
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (12) : 10076 - 10095