共 11 条
- [1] Luo J., Jia C., Wang Y., Et al., Mechanism of the gas tungsten-arc welding in longitudinal magnetic field controlling-I. Property of the arc, Acta Metallurgica Sinica, 37, 2, pp. 212-216, (2001)
- [2] Tanaka M., Terasaki H., Ushio M., Et al., A unified numerical modeling of stationary tungsten-inert-gas welding process, Metallurgical and Materials Transactions A, 33, 7, pp. 2043-2052, (2001)
- [3] Luo J., Yao Z., Xue K., Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding, International Journal of Advanced Manufacturing Technology, 84, 1-4, pp. 647-661, (2016)
- [4] Yin X., Gou J., Zhang J., Et al., Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic, Journal of Physics D: Applied Physics, 45, 28, pp. 5203-5300, (2012)
- [5] Chen T., Zhang X., Bing B., Et al., Numerical study of DC argon arc with axial magnetic fields, Plasma Chemistry and Plasma Processing, 35, 1, pp. 61-74, (2015)
- [6] Lu S., Dong W., Li D., Et al., Numerical study and comparisons of gas tungsten arc properties between argon and nitrogen, Computational Materials Science, 45, 2, pp. 327-335, (2009)
- [7] Pan J., Yang L., Hu S., Simulation and analysis of heat transfer and fluid flow characteristics of variable GTAW process based on a tungsten-arc-specimen couples model, International Journal of Heat and Mass Transfer, 96, pp. 346-352, (2016)
- [8] Boulos M.I., Fauchais P., Pfender E., Thermal Plasmas-Fundamentals and Applications, (1994)
- [9] Savas A., Ceyhun V., Finite element analysis of GTAW arc under different shielding gases, Computational Materials Science, 51, 1, pp. 53-71, (2011)
- [10] Zhou X., Heberlein J., An experimental investigation of factors affecting arc-cathode erosion, Journal of Physics D: Applied Physics, 31, 19, pp. 2577-2590, (1998)