Bioinspired ultra-stretchable dual-carbon conductive functional polymer fiber materials for health monitoring, energy harvesting and self-powered sensing

被引:11
|
作者
Chung K.Y. [1 ]
Xu B. [1 ]
Li Z. [1 ]
Liu Y. [1 ]
Han J. [1 ]
机构
[1] Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University
关键词
Bioinspired; Conductive polymer composites (CPC); Strain sensors; Stretchable electronics; Triboelectric nanogenerators;
D O I
10.1016/j.cej.2022.140384
中图分类号
学科分类号
摘要
Highly stretchable and multifunctional wearable electronics have shown a desirable attraction recently. However, most fiber-based devices are hindered by the dilemma of stretchability and sensitivity, as well as the decline of performance due to delamination. Herein, a bis-condensed inspired ultra-stretchable dual-carbon fiber (MSSS fiber) is proposed based on the synergistic interaction and tunneling effect of multi-walled carbon nanotube (MWCNTs)-superconductive carbon black (SCCB)-poly[styrene-b-isoprene-b-styrene] (SIS) conductive polymer composite (CPC) and a strong interlocked layer-by-layer structure. The MSSS fiber is developed as a strain sensor with good electric conductivity and stability, ultra-stretchability, high sensitivity (GF = 1,096 at 1,100 %), and good durability (10,000 at 1,000 %) which shows excellent sensing for various motion applications. Simultaneously, the MSSS fiber is also exploited as a single-electrode fiber-based triboelectric nanogenerator (F-TENG) by triboelectric material coating. It demonstrates a significant output power, good durability over 25,000 cycles and stable electric output performance under high-level deformation (600 %), endowing its reliability as a power source supply and self-powered sensing device. This ultra-stretchable conductive fiber further explores the development of multifunctional subtle wearable electronics. The applications of healthcare sensing and energy harvesting also give promising potential in the field of smart wearable electronics, human–computer interaction, and artificial intelligence. © 2022 Elsevier B.V.
引用
收藏
相关论文
共 12 条
  • [1] Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing
    Li, Guoxia
    Li, Longwei
    Zhang, Panpan
    Chang, Caiyun
    Xu, Fan
    Pu, Xiong
    RSC ADVANCES, 2021, 11 (28) : 17437 - 17444
  • [2] Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing
    Zhou, Kangkang
    Zhao, Yi
    Sun, Xiupeng
    Yuan, Zuqing
    Zheng, Guoqiang
    Dai, Kun
    Mi, Liwei
    Pan, Caofeng
    Liu, Chuntai
    Shen, Changyu
    NANO ENERGY, 2020, 70 (70)
  • [3] Hierarchically porous architectured stretchable fibrous materials in energy harvesting and self-powered sensing
    Han, Jing
    Li, Zihua
    Fang, Cuiqin
    Liu, Xinlong
    Yang, Yujue
    Wang, Qian
    Zhang, Junze
    Xu, Bingang
    NANO ENERGY, 2024, 129
  • [4] Statistical modeling enabled design of high-performance conductive composite fiber materials for energy harvesting and self-powered sensing
    Yang, Yujue
    Xu, Bingang
    Li, Meiqi
    Gao, Yuanyuan
    Han, Jing
    CHEMICAL ENGINEERING JOURNAL, 2023, 466
  • [5] Flexible Fiber Shaped Self-Powered System Based on Conductive PANI for Signal Sensing and Energy Harvesting
    Ju, Qianqian
    Zu, Guoqing
    Wu, Hui
    Yang, Xijia
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (40) : 54412 - 54422
  • [6] Stretchable conductive-ink-based wrinkled triboelectric nanogenerators for mechanical energy harvesting and self-powered signal sensing
    Wu, W.
    Peng, X.
    Xiao, Y.
    Sun, J.
    Li, L.
    Xu, Y.
    Zhang, S.
    Dong, K.
    Wang, L.
    MATERIALS TODAY CHEMISTRY, 2023, 27
  • [7] A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring
    Yi, Fang
    Wang, Xiaofeng
    Niu, Simiao
    Li, Shengming
    Yin, Yajiang
    Dai, Keren
    Zhang, Guangjie
    Lin, Long
    Wen, Zhen
    Guo, Hengyu
    Wang, Jie
    Yeh, Min-Hsin
    Zi, Yunlong
    Liao, Qingliang
    You, Zheng
    Zhang, Yue
    Wang, Zhong Lin
    SCIENCE ADVANCES, 2016, 2 (06):
  • [8] A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring
    Cheng, Yin
    Lu, Xin
    Chan, Kwok Hoe
    Wang, Ranran
    Cao, Zherui
    Sun, Jing
    Ho, Ghim Wei
    NANO ENERGY, 2017, 41 : 511 - 518
  • [9] Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring
    He, Meng
    Du, Wenwen
    Feng, Yanmin
    Li, Shijie
    Wang, Wei
    Zhang, Xiang
    Yu, Aifang
    Wan, Lingyu
    Zhai, Junyi
    Nano Energy, 2021, 86
  • [10] Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring
    He, Meng
    Du, Wenwen
    Feng, Yanmin
    Li, Shijie
    Wang, Wei
    Zhang, Xiang
    Yu, Aifang
    Wan, Lingyu
    Zhai, Junyi
    NANO ENERGY, 2021, 86