ACANet: A Fine-grained Image Classification Optimization Method Based on Convolution and Attention Fusion

被引:0
|
作者
Tan, Zhi [1 ]
Xu, Zi-Hao [1 ]
机构
[1] School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing,102616, China
关键词
Classification (of information) - Convolution - Image enhancement - Image fusion;
D O I
10.53106/199115992024023501002
中图分类号
学科分类号
摘要
The key to solve the problem of fine-grained image classification is to find the differentiation regions related to fine-grained features. In this paper, we try to add new network components to the original network and adjust various parameters to try to propose a new fine-grained image classification network. We propose a fine-grained image classification network based on the fusion of asymmetric convolution, convolution and self-attention mechanisms. Firstly, an enhanced module using asymmetric convolution to assist classical convolution proposed to help convolution learn deep features. Secondly, according to the common points of convolution and self-attention mechanism, we invented a fusion module of convolution and self-attention mechanism to improve the learning ability of the network.We integrate these two modules into the residual network and invent a new residual network .Finally, according to the experience, we design a new downsampling layer to adapt to the new component of the attention mechanism and improve the performance of the model. The experiment test on three publicly available datasets, and three methods for comparison. The results show that the new structure can effectively complete the task of fine-grained image classification, and the classification accuracy of different methods and different datasets are significantly improved. © 2024 Codon Publications. All rights reserved.
引用
收藏
页码:17 / 31
相关论文
共 50 条
  • [1] Fine-grained image classification method based on hybrid attention module
    Lu, Weixiang
    Yang, Ying
    Yang, Lei
    [J]. FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [2] Learning Cascade Attention for fine-grained image classification
    Zhu, Youxiang
    Li, Ruochen
    Yang, Yin
    Ye, Ning
    [J]. NEURAL NETWORKS, 2020, 122 : 174 - 182
  • [3] Adversarial erasing attention for fine-grained image classification
    Ji, Jinsheng
    Jiang, Linfeng
    Zhang, Tao
    Zhong, Weilin
    Xiong, Huilin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 22867 - 22889
  • [4] Aggregate attention module for fine-grained image classification
    Xingmei Wang
    Jiahao Shi
    Hamido Fujita
    Yilin Zhao
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 8335 - 8345
  • [5] Adversarial erasing attention for fine-grained image classification
    Jinsheng Ji
    Linfeng Jiang
    Tao Zhang
    Weilin Zhong
    Huilin Xiong
    [J]. Multimedia Tools and Applications, 2021, 80 : 22867 - 22889
  • [6] Fine-Grained Image Classification Based on Cross-Attention Network
    Zheng, Zhiwen
    Zhou, Juxiang
    Gan, Jianhou
    Luo, Sen
    Gao, Wei
    [J]. INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2022, 18 (01)
  • [7] Aggregate attention module for fine-grained image classification
    Wang, Xingmei
    Shi, Jiahao
    Fujita, Hamido
    Zhao, Yilin
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (7) : 8335 - 8345
  • [8] Fine-Grained Image Classification for Crop Disease Based on Attention Mechanism
    Yang, Guofeng
    He, Yong
    Yang, Yong
    Xu, Beibei
    [J]. FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [9] PSBCNN : Fine-grained image classification based on pyramid convolution networks and SimAM
    Li, Shengxiang
    Wang, Sifeng
    Dong, Zhaoan
    Li, Anran
    Qi, Lianyong
    Yan, Chao
    [J]. 2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 825 - 828
  • [10] Fine-Grained Image Classification Based on Target Acquisition and Feature Fusion
    Chu, Yan
    Wang, Zhengkui
    Wang, Lina
    Zhao, Qingchao
    Shan, Wen
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, 2021, 12817 : 209 - 221