p62/SQSTM1 Participates in the Innate Immune Response of Macrophages Against Candida albicans Infection

被引:0
|
作者
He YanZhi [1 ,2 ,3 ,4 ,5 ,6 ]
Duan ZhiMin [7 ,8 ,9 ,4 ,10 ,6 ]
Chen Xu [1 ,2 ,3 ,4 ,5 ,6 ]
Li Min [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Center for Global Health
[2] School of Public Health
[3] Nanjing Medical University
[4] Nanjing
[5] Jiangsu
[6] China
[7] Department of Dermatology
[8] Hospital for Skin Diseases (Institute of Dermatology)
[9] Chinese Academy of Medical Sciences and Peking Union Medical College
[10] Jiangsu
关键词
p62/SQSTM1; Candida albicans; macrophage; innate immune response; phagocytosis;
D O I
暂无
中图分类号
R392 [医学免疫学];
学科分类号
100102 ;
摘要
Objective: This study was designed to evaluate whether p62/SQSTM1 (hereafter referred to as p62) is involved in the immune response of macrophages against challenge byCandida albicans (C. albicans).Methods: We cultured bone marrow-derived macrophages (BMDMs) to investigate the immune response to challenge byC. albicans. The p62 gene was knocked down by transfection with p62 small interfering RNA (siRNA) in the p62 siRNA group. BMDMs transfected with nonsense siRNA served as the negative control (NC) group. These two groups of BMDMs were challenged withC. albicans in vitro. We detected p62 expression through quantitative reverse transcription PCR and western blotting. The phagocytosis ability of BMDMs was evaluated by flow cytometry and microscopic examination using an Olympus FV1000 laser scanning confocal microscope. Moreover, we determined the level of reactive oxygen species (ROS) in BMDMs. The mRNA levels of proinflammatory cytokines were determined by quantitative reverse transcription PCR.Results: After stimulation byC. albicans, the relative expression of p62 mRNA was increased in a dose-dependent manner, the relative expression of p62 and the ratio of BMDMs toC. albicans is 1.893 ± 0.2156 (1:1,P < 0.05), 2.873 ± 0.4787 (1:3,P < 0.05) and 3.556 ± 0.2892 (1:5,P < 0.01). The p62 protein level was also increased. After transfection with p62 siRNA, the mRNA and protein levels of p62 were significantly decreased in BMDMs (P < 0.05). After 0.5, 1 and 2 hours of co-culture of BMDMs withC. albicans, flow cytometry showed that the phagocytosis rates ofC. albicans by BMDMs were significantly lower in the p62 siRNA group than in the NC group (39.70 ± 1.69%vs. 55.23 ± 0.72%, 46.70 ± 0.89%vs. 60.80 ± 1.78%, 51.90 ± 0.98%vs. 64.43 ± 2.0%, respectively, allP < 0.05). Consistent results were seen in the production of ROS (4269 ± 392.6vs. 13426 ± 1859.7, 4967 ± 721.2vs. 13687 ± 2611.2, 7647 ± 1950.0vs. 17719 ± 1814.2, respectively, allP < 0.05). The ROS levels were higher in BMDMs of the NC group than in BMDMs transfected with p62 siRNA at 0.5, 1, and 2 hours after treatment withC. albicans. BMDMs was co-cultured withC. albicans for 4 and 12 hours, the mRNA levels of interleukin-1β and interleukin-18 in NCs were also higher than p62 siRNA group, interleukin-1β: (6.14 ± 1.63vs. 12.12 ± 0.54, 8.81 ± 0.86vs. 26.2 ± 4.67, respectively, allP < 0.05), IL-18: (0.38 ± 0.02vs. 0.97 ± 0.06, 0.44 ± 0.02vs. 2.23 ± 0.46, respectively, allP < 0.05).Conclusion: p62 plays an important role in the process of phagocytosis in BMDMs challenged byC. albicans through ROS production and expression of proinflammatory cytokines.
引用
收藏
相关论文
共 50 条
  • [1] SQSTM1/p62 from Litopenaeus vannamei is involved in the immune response to Vibrio infection
    Luo, Junliang
    Lu, Wei
    Chen, Yanghui
    Li, Guojian
    Feng, Jinyuan
    Huang, Yanru
    Yu, Yu
    Cai, Shuanghu
    Jian, Jichang
    Yang, Shiping
    FISH & SHELLFISH IMMUNOLOGY, 2025, 158
  • [2] P62/SQSTM1: a multifunctional adaptor for obesity
    Li, Xing
    Zheng, Hongting
    Long, Min
    DIABETES-METABOLISM RESEARCH AND REVIEWS, 2016, 32 (SUPP 2) : 65 - 66
  • [3] Mechanistic insight into the regulation of SQSTM1/p62
    Zhang, Yi
    Mun, Su Ran
    Linares, Juan F.
    Towers, Christina G.
    Thorburn, Andrew
    Diaz-Meco, Maria T.
    Kwon, Yong Tae
    Kutateladze, Tatiana G.
    AUTOPHAGY, 2019, 15 (04) : 735 - 737
  • [4] MONITORING AUTOPHAGIC DEGRADATION OF P62/SQSTM1
    Bjorkoy, Geir
    Lamark, Trond
    Pankiv, Serhiy
    Overvatn, Aud
    Brech, Andreas
    Johansen, Terje
    METHODS IN ENZYMOLOGY: AUTOPHAGY IN MAMMALIAN SYSTEMS, VOL 452, PT B, 2009, 452 : 181 - 197
  • [5] The Autophagy Receptor SQSTM1/p62 Is a Restriction Factor of HCMV Infection
    Kraemer, Nadine
    Mato, Uxia Gestal
    Krauter, Steffi
    Buescher, Nicole
    Afifi, Ahmad
    Herhaus, Lina
    Florin, Luise
    Plachter, Bodo
    Zimmermann, Christine
    VIRUSES-BASEL, 2024, 16 (09):
  • [6] Regulation of selective autophagy: the p62/SQSTM1 paradigm
    Lamark, Trond
    Svenning, Steingrim
    Johansen, Terje
    SIGNALLING MECHANISMS IN AUTOPHAGY, 2017, 61 (06): : 609 - 624
  • [7] p62/SQSTM1 analysis in frontotemporal lobar degeneration
    Miller, Louise
    Rollinson, Sara
    Callister, Janis Bennion
    Young, Kate
    Harris, Jenny
    Gerhard, Alex
    Neary, David
    Richardson, Anna
    Snowden, Julie
    Mann, David M. A.
    Pickering-Brown, Stuart M.
    NEUROBIOLOGY OF AGING, 2015, 36 (03) : 1603.e5 - 1603.e9
  • [8] Use of p62/SQSTM1 antibodies for neuropathological diagnosis
    Kuusisto, E.
    Kauppinen, T.
    Alafuzoff, I.
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2008, 34 (02) : 169 - 180
  • [9] SQSTM1/p62: A Potential Target for Neurodegenerative Disease
    Ma, Shifan
    Attarwala, Insiya Y.
    Xie, Xiang-Qun
    ACS CHEMICAL NEUROSCIENCE, 2019, 10 (05): : 2094 - 2114
  • [10] Association of p62/SQSTM1 Excess and Oral Carcinogenesis
    Inui, Takuma
    Chano, Tokuhiro
    Takikita-Suzuki, Mikiko
    Nishikawa, Masanori
    Yamamoto, Gaku
    Okabe, Hidetoshi
    PLOS ONE, 2013, 8 (09):