Purification in entanglement distribution with deep quantum neural network

被引:0
|
作者
徐瑾 [1 ]
陈晓光 [1 ]
张蓉 [1 ]
肖晗微 [1 ]
机构
[1] Department of Communications Science and Engineering, Fudan University
关键词
D O I
暂无
中图分类号
O413 [量子论]; TN918 [通信保密与通信安全]; TP183 [人工神经网络与计算];
学科分类号
070201 ; 081104 ; 0812 ; 0835 ; 0839 ; 1402 ; 1405 ;
摘要
Entanglement distribution is important in quantum communication. Since there is no information with value in this process, purification is a good choice to solve channel noise. In this paper, we simulate the purification circuit under true environment on Cirq, which is a noisy intermediate-scale quantum(NISQ) platform. Besides, we apply quantum neural network(QNN) to the state after purification. We find that combining purification and quantum neural network has good robustness towards quantum noise. After general purification, quantum neural network can improve fidelity significantly without consuming extra states. It also helps to obtain the advantage of entangled states with higher dimension under amplitude damping noise. Thus, the combination can bring further benefits to purification in entanglement distribution.
引用
收藏
页码:92 / 96
页数:5
相关论文
共 50 条
  • [1] Purification in entanglement distribution with deep quantum neural network
    Xu, Jin
    Chen, Xiaoguang
    Zhang, Rong
    Xiao, Hanwei
    [J]. CHINESE PHYSICS B, 2022, 31 (08)
  • [2] Entanglement area law for shallow and deep quantum neural network states
    Jia, Zhih-Ahn
    Wei, Lu
    Wu, Yu-Chun
    Guo, Guang-Can
    Guo, Guo-Ping
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (05)
  • [3] Entanglement purification for memory nodes in a quantum network
    GuanYu Wang
    GuiLu Long
    [J]. Science China Physics, Mechanics & Astronomy, 2020, 63
  • [4] Entanglement purification for memory nodes in a quantum network
    GuanYu Wang
    GuiLu Long
    [J]. Science China(Physics,Mechanics & Astronomy), 2020, Mechanics & Astronomy)2020 (02) : 51 - 58
  • [5] Quantum Entanglement in Neural Network States
    Deng, Dong-Ling
    Li, Xiaopeng
    Das Sarma, S.
    [J]. PHYSICAL REVIEW X, 2017, 7 (02):
  • [6] Entanglement purification for memory nodes in a quantum network
    Wang, GuanYu
    Long, GuiLu
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (02)
  • [7] Entanglement Purification and Protection in a Superconducting Quantum Network
    Yan, Haoxiong
    Zhong, Youpeng
    Chang, Hung-Shen
    Bienfait, Audrey
    Chou, Ming-Han
    Conner, Christopher R.
    Dumur, Etienne
    Grebel, Joel
    Povey, Rhys G.
    Cleland, Andrew N.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (08)
  • [8] Entanglement in a quantum neural network based on quantum dots
    Altaisky, M. V.
    Zolnikova, N. N.
    Kaputkina, N. E.
    Krylov, V. A.
    Lozovik, Yu E.
    Dattani, N. S.
    [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2017, 24 : 24 - 28
  • [9] Detecting Entanglement With Deep Quantum Neural Networks
    Qiu, Peng-Hui
    Chen, Xiao-Guang
    Shi, Yi-Wei
    [J]. IEEE ACCESS, 2019, 7 : 94310 - 94320
  • [10] Quantum momentum distribution and quantum entanglement in the deep tunneling regime
    Wu, Yantao
    Car, Roberto
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (02):