SCATTERING FOR THE FRACTIONAL MAGNETIC SCHR?DINGER OPERATORS

被引:0
|
作者
魏磊
段志文
机构
[1] SchoolofMathematicsandStatistics,HuazhongUniversityofScienceandTechnology
关键词
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In this paper,we prove the existence of the scattering operator for the fractional magnetic Schrodinger operators.In order to do this,we construct the fractional distorted Fourier transforms with magnetic potentials.Applying the properties of the distorted Fourier transforms,the existence and the asymptotic completeness of the wave operators are obtained.Furthermore,we prove the absence of positive eigenvalues for fractional magnetic Schrodinger operators.
引用
收藏
页码:2391 / 2410
页数:20
相关论文
共 50 条
  • [1] Scattering for the fractional magnetic Schrödinger operators
    Wei, Lei
    Duan, Zhiwen
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (06) : 2391 - 2410
  • [2] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    Letters in Mathematical Physics, 2000, 54 : 181 - 192
  • [3] Scattering for Schrödinger operators with conical decay
    Black, Adam
    Malinovitch, Tal
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (07)
  • [4] Observability Results Related to Fractional Schrödinger Operators
    Fabricio Macià
    Vietnam Journal of Mathematics, 2021, 49 : 919 - 936
  • [5] Existence of the Gauge for Fractional Laplacian Schrödinger Operators
    Michael W. Frazier
    Igor E. Verbitsky
    The Journal of Geometric Analysis, 2021, 31 : 9016 - 9044
  • [6] Spectral Multipliers for Magnetic Schrödinger Operators
    Zheng S.
    La Matematica, 2024, 3 (3): : 907 - 940
  • [7] Tunneling Estimates for Magnetic Schrödinger Operators
    Shu Nakamura
    Communications in Mathematical Physics, 1999, 200 : 25 - 34
  • [8] Spectrum and scattering for Schrödinger operators with unbounded coefficients
    Kh. Kh. Murtazin
    A. N. Galimov
    Doklady Mathematics, 2006, 73 : 223 - 225
  • [9] Inverse Scattering for Schrödinger Operators on Perturbed Lattices
    Kazunori Ando
    Hiroshi Isozaki
    Hisashi Morioka
    Annales Henri Poincaré, 2018, 19 : 3397 - 3455
  • [10] Intrinsic Ultracontractivity for Schrödinger Operators Based on Fractional Laplacians
    Kamil Kaleta
    Tadeusz Kulczycki
    Potential Analysis, 2010, 33 : 313 - 339