Modeling of ion cyclotron resonance frequency heating of proton-boron plasmas in EHL-2 spherical tokamak

被引:0
|
作者
伍先树 [1 ,2 ]
李景春 [1 ]
董家齐 [3 ]
石跃江 [3 ]
刘国卿 [1 ]
刘永 [1 ]
龙志强 [4 ]
张布卿 [4 ]
袁宝山 [3 ]
彭元凯 [3 ]
刘敏胜 [3 ]
机构
[1] Shenzhen Key Laboratory of Nuclear and Radiation Safety, Institute for Advanced Study in Nuclear Energy&Safety, College of Physics and Optoelectronic Engineering, Shenzhen University
[2] Department of Earth and Space Sciences, Southern University of Science and Technology
[3] ENN Science and Technology Development Co, Ltd, and Hebei Key Laboratory of Compact Fusion
[4] Siemens Shenzhen Magnetic Resonance
关键词
D O I
暂无
中图分类号
TL631.24 [];
学科分类号
摘要
Ion cyclotron resonance heating(ICRH) stands out as a widely utilized and cost-effective auxiliary method for plasma heating, bearing significant importance in achieving high-performance discharges in p-11B plasmas. In light of the specific context of p-11B plasma in the EHL-2 device, we conducted a comprehensive scan of the fundamental physical parameters of the antenna using the full-wave simulation program TORIC. Our preliminary result indicated that for p-11B plasma, optimal ion heating parameters include a frequency of 40 MHz, with a high toroidal mode number like N?= 28 to heat the majority H ions. In addition, we discussed the impact of concentration of minority ion species on ion cyclotron resonance heating when 11B serves as the heavy minority species. The significant difference in charge-to-mass ratio between boron and hydrogen ions results in a considerable distance between the hybrid resonance layer and the tow inverted cyclotron resonance layer, necessitating a quite low boron ion concentration to achieve effective minority heating. We also considered another method of direct heating of hydrogen ions in the presence of boron ion minority. It is found that at appropriate boron ion concentrations(X(11B)~17%), the position of the hybrid resonance layer approaches that of the hydrogen ion cyclotron resonance layer, thereby altering the polarization at this position and significantly enhancing hydrogen ion fundamental absorption.
引用
收藏
页码:44 / 53
页数:10
相关论文
共 39 条
  • [1] Modeling of ion cyclotron resonance frequency heating of proton-boron plasmas in EHL-2 spherical tokamak
    Wu, Xianshu
    Li, Jingchun
    Dong, Jiaqi
    Shi, Yuejiang
    Liu, Guoqing
    Liu, Yong
    Long, Zhiqiang
    Zhang, Buqing
    Yuan, Baoshan
    Peng, Y. K. Martin
    Liu, Minsheng
    PLASMA SCIENCE & TECHNOLOGY, 2024, 26 (10)
  • [2] Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus
    谭沐芝
    许健强
    杜华荣
    董家齐
    谢华生
    王雪韵
    黄贤礼
    王嵎民
    顾翔
    刘兵
    石跃江
    梁云峰
    the EHL Team
    Plasma Science and Technology, 2025, 27 (02) : 92 - 101
  • [3] Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus
    Tan, Muzhi
    Xu, Jianqiang
    Du, Huarong
    Dong, Jiaqi
    Xie, Huasheng
    Wang, Xueyun
    Huang, Xianli
    Wang, Yumin
    Gu, Xiang
    Liu, Bing
    Shi, Yuejiang
    Liang, Yunfeng
    PLASMA SCIENCE & TECHNOLOGY, 2025, 27 (02)
  • [4] Simulation of ion cyclotron range of frequencies heating in the proton-boron plasma of the spherical tokamak
    Ma, Hao-jie
    Xie, Hua-sheng
    Sun, Guang-lan
    Zhao, Han-yue
    Gan, Yan-biao
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (02)
  • [5] Preliminary considerations and challenges of proton-boron fusion energy extraction on the EHL-2 spherical torus
    He, Huasheng
    Gu, Xiang
    Wang, Yumin
    Wang, Quanyun
    Wang, Feng
    Kong, Haozhe
    Dong, Jiaqi
    Liang, Yunfeng
    Peng, Yueng-Kay Martin
    Liu, Minsheng
    PLASMA SCIENCE & TECHNOLOGY, 2025, 27 (02)
  • [6] Preliminary considerations and challenges of proton-boron fusion energy extraction on the EHL-2 spherical torus
    谢华生
    顾翔
    王嵎民
    王泉云
    王丰
    孔浩喆
    董家齐
    梁云峰
    彭元凯
    刘敏胜
    the EHL Team
    Plasma Science and Technology, 2025, 27 (02) : 115 - 124
  • [7] VARIATIONAL THEORY OF ION-CYCLOTRON RESONANCE HEATING IN TOKAMAK PLASMAS
    GAMBIER, DJ
    SAMAIN, A
    NUCLEAR FUSION, 1985, 25 (03) : 283 - 297
  • [8] Production of sheared flow during ion cyclotron resonance heating in tokamak plasmas
    Liu, CG
    Yamagiwa, M
    Qian, SJ
    PHYSICS OF PLASMAS, 1997, 4 (08) : 2788 - 2790
  • [9] The merits of ion cyclotron resonance heating schemes for sawtooth control in tokamak plasmas
    Chapman, I. T.
    Graves, J. P.
    Lennholm, M.
    Faustin, J.
    Lerche, E.
    Johnson, T.
    Tholerus, S.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [10] Selfconsistent simulation of heating and current drive in tokamak plasmas in the ion cyclotron frequency range
    Brambilla, M
    Bilato, R
    Bonoli, P
    RADIO FREQUENCY POWER IN PLASMAS, 2001, 595 : 16 - 24