Geo-Hgan: Unsupervised anomaly detection in geochemical data via latent space learning

被引:0
|
作者
Ding, Liang [1 ]
Chen, Bainian [1 ]
Zhu, Yuelong [1 ]
Dong, Hai [2 ]
Chan, Guiyang [1 ]
Zhang, Pengcheng [1 ]
机构
[1] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing, Peoples R China
[2] RMIT Univ, Sch Comp Technol, Melbourne, Australia
关键词
Geochemical data; Generative adversarial networks; Anomaly detection; Transfer learning; BIG DATA ANALYTICS; MINERAL PROSPECTIVITY; ROC;
D O I
10.1016/j.cageo.2024.105703
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reconstructing geochemical data for anomaly detection using Generative Adversarial Networks (GANs) has become a prevalent method in identifying geochemical anomalies. However, injecting random noise into GANs can induce model instability. To mitigate this issue, we propose a novel anomaly detection model, Geo-Hgan, which integrates a dual adversarial network architecture with a Latent Space Adversarial Module (LSAM) to learn the distribution of latent variables from arbitrary data and optimize the sample reconstruction process, thereby alleviating instability during GAN training. Additionally, an encoder guided by the LSAM-pretrained GAN is employed to extract variational features, facilitating rapid and effective sample mapping into the latent space defined by LSAM. Experimental results demonstrate that under unsupervised conditions, Geo-Hgan achieves an Area Under the Curve (AUC) score of 85% across three geochemical datasets, outperforming similar models in accuracy and reconstruction capabilities. To assess its versatility and generalization ability, we extend Geo-Hgan to anomaly detection tasks in computer vision, where it achieves an average AUC score of 98.7% on the MvtecAD dataset, setting a new state-of-the-art performance in the domain. Furthermore, we propose AnomFilter, a method for setting anomaly thresholds based on the clustering hypothesis. AnomFilter identifies high-confidence anomaly samples identified by Geo-Hgan in the source domain and iteratively transfers them to the target domain. These high-confidence anomaly samples, combined with a small number of known positive samples in the target domain, enhance the accuracy of supervised geochemical anomaly detection in the target domain, which achieved an AUC score of 94%. The utilization of anomaly detection models for sample transfer learning offers a novel perspective for future work.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Latent Out: an unsupervised deep anomaly detection approach exploiting latent space distribution
    Angiulli, Fabrizio
    Fassetti, Fabio
    Ferragina, Luca
    MACHINE LEARNING, 2023, 112 (11) : 4323 - 4349
  • [2] Learning deep latent space for unsupervised violence detection
    Ehsan, Tahereh Zarrat
    Nahvi, Manoochehr
    Mohtavipour, Seyed Mehdi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (08) : 12493 - 12512
  • [3] Learning deep latent space for unsupervised violence detection
    Tahereh Zarrat Ehsan
    Manoochehr Nahvi
    Seyed Mehdi Mohtavipour
    Multimedia Tools and Applications, 2023, 82 : 12493 - 12512
  • [4] Unsupervised Anomaly Detection via Nonlinear Manifold Learning
    Yousefpour, Amin
    Shishehbor, Mehdi
    Foumani, Zahra Zanjani
    Bostanabad, Ramin
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (11)
  • [5] A Latent Feature Autoencoder via Adversarial Training for Unsupervised Anomaly Detection
    Tang, Wei
    Li, Jun
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2718 - 2723
  • [6] Latent feature reconstruction for unsupervised anomaly detection
    Lin, Jinghuang
    He, Yifan
    Xu, Weixia
    Guan, Jihong
    Zhang, Ji
    Zhou, Shuigeng
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23628 - 23640
  • [7] Latent feature reconstruction for unsupervised anomaly detection
    Jinghuang Lin
    Yifan He
    Weixia Xu
    Jihong Guan
    Ji Zhang
    Shuigeng Zhou
    Applied Intelligence, 2023, 53 : 23628 - 23640
  • [8] Unsupervised video anomaly detection via normalizing flows with implicit latent features
    Cho, MyeongAh
    Kim, Taeoh
    Kim, Woo Jin
    Cho, Suhwan
    Lee, Sangyoun
    PATTERN RECOGNITION, 2022, 129
  • [9] Unsupervised learning of anomalous diffusion data an anomaly detection approach
    Munoz-Gil, Gorka
    Corominas, Guillem Guigo, I
    Lewenstein, Maciej
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (50)
  • [10] Anomaly Detection on Shuttle data using Unsupervised Learning Techniques
    Shriram, S.
    Sivasankar, E.
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), 2019, : 221 - 225