Interfacial and Vacancy Engineering on 3D-Interlocked Anode Catalyst Layer for Achieving Ultralow Voltage in Anion Exchange Membrane Water Electrolyzer

被引:1
|
作者
Wan, Lei [1 ]
Lin, Dongcheng [1 ]
Liu, Jing [1 ]
Xu, Ziang [1 ]
Xu, Qin [1 ]
Zhen, Yihan [1 ]
Pang, Maobin [1 ]
Wang, Baoguo [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
oxygen evolution reaction; interfacial engineering; vacancy engineering; membrane electrode assembly; anion exchange membrane waterelectrolysis; OXYGEN EVOLUTION; HIGH-PERFORMANCE; HYDROGEN-PRODUCTION; ACTIVE-SITE; NANOPARTICLES;
D O I
10.1021/acsnano.4c03668
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing a high-efficiency and stable anode catalyst layer (CL) is crucial for promoting the practical applications of anion exchange membrane (AEM) water electrolyzers. Herein, a hierarchical nanosheet array composed of oxygen vacancy-enriched CoCrOx nanosheets and dispersed FeNi layered double hydroxide (LDH) is proposed to regulate the electronic structure and increase the electrical conductivity for improving the intrinsic activity of the oxygen evolution reaction (OER). The CoCrOx/NiFe LDH electrodes require an overpotential of 205 mV to achieve a current density of 100 mA cm(-2), and they exhibit long-term stability at 1000 mA cm(-2) over 7000 h. Notably, a breakthrough strategy is introduced in membrane electrode assembly (MEA) fabrication by transferring CoCrOx/NiFe LDH to the surface of an AEM, forming a 3D-interlocked anode CL, significantly reducing the overall cell resistance and enhancing the liquid/gas mass transfer. In AEM water electrolysis, it exhibits an ultralow cell voltage of 1.55 V-cell to achieve a current density of 1.0 A cm(-2) in 1 M KOH, outperforming the state-of-the-art Pt/C//IrO2. This work provides a valuable approach to designing high-efficiency electrocatalysts at the single-cell level for advanced alkaline water electrolysis technologies.
引用
收藏
页码:22901 / 22916
页数:16
相关论文
共 14 条
  • [1] Optimization of Ionomer Content in Anode Catalyst Layer for Improving Performance of Anion Exchange Membrane Water Electrolyzer
    Park, Yoo Sei
    Jang, Myeong Je
    Jeong, Jae-Yeop
    Lee, Jooyoung
    Jeong, Jaehoon
    Kim, Chiho
    Yang, Juchan
    Choi, Sung Mook
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [2] Effect of perfluorosulfonic acid ionomer in anode catalyst layer on proton exchange membrane water electrolyzer performance
    Zhao, Congfan
    Yuan, Shu
    Cheng, Xiaojing
    An, Lu
    Li, Jiazhen
    Shen, Shuiyun
    Yin, Jiewei
    Yan, Xiaohui
    Zhang, Junliang
    JOURNAL OF POWER SOURCES, 2023, 580
  • [3] Highly Efficient and Durable Anion Exchange Membrane Water Electrolyzer Enabled by a Fe-Ni3S2 Anode Catalyst
    Ding, Guoheng
    Lee, Husileng
    Li, Zhiheng
    Du, Jian
    Wang, Linqin
    Chen, Dexin
    Sun, Licheng
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2023, 4 (01):
  • [4] Understanding the Effects of Anode Catalyst Conductivity and Loading on Catalyst Layer Utilization and Performance for Anion Exchange Membrane Water Electrolysis
    Kreider, Melissa E.
    Yu, Haoran
    Osmieri, Luigi
    Parimuha, Makenzie R.
    Reeves, Kimberly S.
    Marin, Daniela H.
    Hannagan, Ryan T.
    Volk, Emily K.
    Jaramillo, Thomas F.
    Young, James L.
    Zelenay, Piotr
    Alia, Shaun M.
    ACS CATALYSIS, 2024, 14 (14): : 10806 - 10819
  • [5] High-performance Ir Based Double Anode Catalyst Layer for Anion Exchange Membrane Water Electrolysis
    Yin Y.
    Yin S.
    Chen B.
    Feng Y.
    Zhang J.
    Cailiao Daobao/Materials Reports, 2024, 38 (06):
  • [6] Self-adjusting anode catalyst layer for smart water management in anion exchange membrane fuel cells
    Zhang, Junfeng
    Liu, Yang
    Zhu, Weikang
    Pei, Yabiao
    Yin, Yan
    Qin, Yanzhou
    Li, Xianguo
    Guiver, Michael D.
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (03):
  • [7] Preparation of Ir/TiO2 Composite Oxygen Evolution Catalyst and Load Analysis as Anode Catalyst Layer of Proton Exchange Membrane Water Electrolyzer
    Huang, Peng
    Xu, Xiao
    Hao, Yashi
    Zhao, Hong
    Liang, Xin
    Yang, Zuobo
    Yun, Jimmy
    Zhang, Jie
    ACS OMEGA, 2024, 9 (32): : 34482 - 34492
  • [8] Effect of metal-organic framework on hydrogen volume fraction in the oxygen-rich anode catalyst layer of proton exchange membrane water electrolyzer
    Kang, Inku
    Lee, Sojin
    Choi, Won-Jong
    Lee, Siyeon
    So, Soonyong
    Yu, Duk Man
    Yoon, Sang Jun
    Kim, Dong-Won
    Nam, Kwan Woo
    Oh, Keun-Hwan
    CHEMICAL ENGINEERING JOURNAL, 2025, 508
  • [9] Engineering Durable Anion Exchange Membrane Water Electrolyzers through Suppressed Electrochemical Corrosion of a NiFe-Graphitic Carbon Shell Anode Catalyst
    Park, Young Sang
    Choi, Gwan Hyun
    Jung, Jiyoon
    Ahn, Cheol-Hee
    Hwang, Seung Sang
    Nam, Myeong Gyun
    Yoo, Pil J.
    Lee, Albert S.
    ACS CATALYSIS, 2024, 14 (13): : 9969 - 9984
  • [10] Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis
    Carbone, A.
    Zignani, S. Campagna
    Gatto, I.
    Trocino, S.
    Arico, A. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (16) : 9285 - 9292