IGE-LIO: Intensity Gradient Enhanced Tightly Coupled LiDAR-Inertial Odometry

被引:0
|
作者
Chen, Ziyu [1 ]
Zhu, Hui [2 ]
Yu, Biao [2 ]
Jiang, Chunmao [1 ]
Hua, Chen [1 ]
Fu, Xuhui [1 ]
Kuang, Xinkai [1 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
[2] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
关键词
Laser radar; Feature extraction; Simultaneous localization and mapping; Noise; Accuracy; Location awareness; Data mining; Degenerated environments; intensity gradient; localization; simultaneous localization and mapping (SLAM); weighting function; ROBUST;
D O I
10.1109/TIM.2024.3427795
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Simultaneous localization and mapping (SLAM) plays an important role in the state estimation of mobile robots. Most popular LiDAR SLAM (L-SLAM) methods extract feature points only from the geometric structure of the environment, which can result in inaccurate localization in degenerated scenarios. In this article, we present a novel framework for LiDAR intensity gradient enhanced tightly coupled LiDAR-inertial odometry (IGE-LIO). The framework proposes a novel LiDAR intensity gradient-based feature extraction approach for accurate pose estimation, overcoming the challenges faced by L-SLAM in degenerated environments. After computing the intensity gradient of each LiDAR point, we dynamically extract intensity edge points (IEPs) from texture information. In addition, we extract geometric planar points (GPPs) and geometric edge points (GEPs) based on geometric information. Then, the error analysis is performed on each type of feature points, and the weighting functions are designed to correct measurement noise and mitigate biases introduced by the additional uncertainty in feature extraction. Subsequently, an iterative extended Kalman filter (IEKF) framework is constructed by combining residuals from point-to-plane and point-to-edge associations. Finally, extensive experiments are conducted in indoor, outdoor, and LiDAR degenerated scenarios. The results demonstrate the significantly improved robustness and accuracy of our proposed method compared with the existing geometric-only methods, especially in LiDAR degenerated scenarios.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] SW-LIO: A Sliding Window Based Tightly Coupled LiDAR-Inertial Odometry
    Wang, Zelin
    Liu, Xu
    Yang, Limin
    Gao, Feng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (10): : 6675 - 6682
  • [2] DY-LIO: Tightly-coupled LiDAR-Inertial Odometry for dynamic environments
    Zou J.
    Chen H.
    Shao L.
    Bao H.
    Tang H.
    Xiang J.
    Liu J.
    IEEE Sensors Journal, 2024, 24 (21) : 1 - 1
  • [3] RI-LIO: Reflectivity Image Assisted Tightly-Coupled LiDAR-Inertial Odometry
    Zhang, Yanfeng
    Tian, Yunong
    Wang, Wanguo
    Yang, Guodong
    Li, Zhishuo
    Jing, Fengshui
    Tan, Min
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1802 - 1809
  • [4] LIO-GVM: An Accurate, Tightly-Coupled Lidar-Inertial Odometry With Gaussian Voxel Map
    Ji, Xingyu
    Yuan, Shenghai
    Yin, Pengyu
    Xie, Lihua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2200 - 2207
  • [5] iG-LIO: An Incremental GICP-Based Tightly-Coupled LiDAR-Inertial Odometry
    Chen, Zijie
    Xu, Yong
    Yuan, Shenghai
    Xie, Lihua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1883 - 1890
  • [6] Tightly Coupled LiDAR-Inertial Odometry and Mapping for Underground Environments
    Chen, Jianhong
    Wang, Hongwei
    Yang, Shan
    SENSORS, 2023, 23 (15)
  • [7] Faster-LIO: Lightweight Tightly Coupled Lidar-Inertial odometry Using Parallel Sparse Incremental Voxels
    Bai, Chunge
    Xiao, Tao
    Chen, Yajie
    Wang, Haoqian
    Zhang, Fang
    Gao, Xiang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 4861 - 4868
  • [8] FMCW-LIO: A Doppler LiDAR-Inertial Odometry
    Zhao, Mingle
    Wang, Jiahao
    Gao, Tianxiao
    Xu, Chengzhong
    Kong, Hui
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06): : 5727 - 5734
  • [9] Tightly-coupled Lidar-inertial Odometry and Mapping in Real Time
    Dai, Wei
    Tian, Bailing
    Chen, Hongming
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3258 - 3263
  • [10] FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter
    Xu, Wei
    Zhang, Fu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 3317 - 3324