Predicting Higher-order Dynamics without Network Topology by Ridge Regression

被引:0
|
作者
Zhou, Zili [1 ]
Li, Cong [1 ]
Qu, Bo [2 ]
Li, Xiang [3 ]
机构
[1] Fudan Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
[2] Guangdong Univ Sci & Technol, Dept Comp Sci, Dongguan, Peoples R China
[3] Tongji Univ, Inst Complex Networks & Intelligent Syst, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Dynamics on networks; Predicting dynamics; Higher-order dynamics; COMPLEX;
D O I
10.1109/ISCAS58744.2024.10558445
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The prediction of future dynamics on networks is a challenge. Unfortunately, due to the noise in the sampling process, or the low resolution of observational data, it is hardly feasible to get the complete topology of real-world networks. Moreover, the higher-order interactions among nodes add the difficulty to accurate prediction of dynamics on networks. In this work, we proposed a two-step approach for higher-order dynamics prediction without network topology. First, the observations of nodal dynamics of a specific dynamical model on unknown hypergraphs are collected to solve an optimization problem by Ridge regression, to obtain a surrogate incidence matrix. Second, the prediction is obtained by iterating the equation of the dynamical model with the surrogate incidence matrix. We define the average relative prediction error to evaluate the performance of our prediction method, and a wide range of hypergraph dynamics with different parameters are predicted. The prediction accuracy is positively correlated with the number of hyperedges the hypergraph contains and the contact rate in the dynamical model.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Topology and dynamics of higher-order multiplex networks
    Krishnagopal, Sanjukta
    Bianconi, Ginestra
    CHAOS SOLITONS & FRACTALS, 2023, 177
  • [2] Topology shapes dynamics of higher-order networks
    Ana P. Millán
    Hanlin Sun
    Lorenzo Giambagli
    Riccardo Muolo
    Timoteo Carletti
    Joaquín J. Torres
    Filippo Radicchi
    Jürgen Kurths
    Ginestra Bianconi
    Nature Physics, 2025, 21 (3) : 353 - 361
  • [3] Higher-order income dynamics with linked regression trees
    Druedahl, Jeppe
    Munk-Nielsen, Anders
    ECONOMETRICS JOURNAL, 2020, 23 (03): : S25 - S58
  • [4] Higher-order band topology
    Biye Xie
    Hai-Xiao Wang
    Xiujuan Zhang
    Peng Zhan
    Jian-Hua Jiang
    Minghui Lu
    Yanfeng Chen
    Nature Reviews Physics, 2021, 3 : 520 - 532
  • [5] Higher-order topology in bismuth
    Schindler, Frank
    Wang, Zhijun
    Vergniory, Maia G.
    Cook, Ashley M.
    Murani, Anil
    Sengupta, Shamashis
    Kasumov, Alik Yu.
    Deblock, Richard
    Jeon, Sangjun
    Drozdov, Ilya
    Bouchiat, Helene
    Gueron, Sophie
    Yazdani, Ali
    Bernevig, B. Andrei
    Neupert, Titus
    NATURE PHYSICS, 2018, 14 (09) : 918 - +
  • [6] Higher-order topology in bismuth
    Frank Schindler
    Zhijun Wang
    Maia G. Vergniory
    Ashley M. Cook
    Anil Murani
    Shamashis Sengupta
    Alik Yu. Kasumov
    Richard Deblock
    Sangjun Jeon
    Ilya Drozdov
    Hélène Bouchiat
    Sophie Guéron
    Ali Yazdani
    B. Andrei Bernevig
    Titus Neupert
    Nature Physics, 2018, 14 : 918 - 924
  • [7] Higher-order band topology
    Xie, Biye
    Wang, Hai-Xiao
    Zhang, Xiujuan
    Zhan, Peng
    Jiang, Jian-Hua
    Lu, Minghui
    Chen, Yanfeng
    NATURE REVIEWS PHYSICS, 2021, 3 (07) : 520 - 532
  • [8] A CONSISTENT HIGHER-ORDER THEORY WITHOUT A (HIGHER-ORDER) MODEL
    FORSTER, T
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (05): : 385 - 386
  • [9] Typed higher-order narrowing without higher-order strategies
    Antoy, S
    Tolmach, A
    FUNCTIONAL AND LOGIC PROGRAMMING, PROCEEDINGS, 1999, 1722 : 335 - 352
  • [10] Optimizing higher-order network topology for synchronization of coupled phase oscillators
    Tang, Ying
    Shi, Dinghua
    Lu, Linyuan
    COMMUNICATIONS PHYSICS, 2022, 5 (01)