Recovering rare earth elements from svanbergite ores by roasting and phosphoric acid leaching

被引:0
|
作者
Ma, Keyu [1 ,2 ,3 ]
Zhang, Jie [1 ]
Men, Pengpeng [4 ]
Deng, Qiufeng [5 ]
Rao, Jun [2 ,3 ]
机构
[1] Guizhou Univ, Collage Min, Guiyang 550025, Peoples R China
[2] HeBei GEO Univ, Engn Res Ctr Silicate Solid Waste Resource Utiliza, Shijiazhuang 510000, Peoples R China
[3] HeBei GEO Univ, Hebei Key Lab Green Dev Rock Mineral Mat, Shijiazhuang 510000, Peoples R China
[4] North Engn Design & Res Inst Co Ltd, Shijiazhuang 510000, Peoples R China
[5] Guizhou Tianbao Mineral Resources Consulting Serv, Guiyang 550000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
rare earth elements; svanbergite; response surface methodology; roasting; phosphoric acid; PHOSPHATE ROCK; EXTRACTION; LITHIUM;
D O I
10.37190/ppmp/193459
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rare earth elements (REEs) are regarded as key global strategic metals, and recovering REEs from phosphate ores might constitute an alternative method of acquiring rare earth resources. Svanbergite ores in Sichuan are particular phosphates rocks that contain abundant REEs, which are valuable resources that have not been fully developed and utilized. Consequently, the development of crucial technologies for extracting REEs from svanbergite ores hold strategic and scientific significance. This study employed roasting and phosphoric acid leaching processes to recover REEs from svanbergite ores. Response surface methodology (RSM) was applied to optimize the hydrometallurgical process parameters. This study found that the optimal conditions for REEs recovery were: a roasting temperature 600 degrees C, a roasting time of 38.72 min, a phosphoric acid concentration of 40%, a leaching liquid/solid mass ratio of 10, a leaching temperature of 75 degrees C and a leaching time of 70 min, resulting in a maximum predicted REE recovery rate of 83.57%. The experimental values exhibited a high degree of proximity to the predicted values, thereby substantiating the accuracy of the model and validating the plausibility of the optimized solution. Mechanistic analysis revealed that after the roasting process, the crandallite formed new acid-soluble new phases. Following the phosphoric acid leaching process, REEs were present predominantly in the form of REE3+ in the leaching solution, consequently separating the REEs from the svanbergite ores. This study provides a valuable reference for the recovery of REEs from associated rare earth phosphate ores.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [1] Leaching Kinetics of Rare Earth Elements in Phosphoric Acid from Phosphate Rock
    Li, Zhili
    Xie, Zhihao
    Deng, Jie
    He, Dongsheng
    Zhao, Hengqin
    Liang, Huan
    METALS, 2021, 11 (02) : 1 - 17
  • [2] Rapid and selective leaching of actinides and rare earth elements from rare earth-bearing minerals and ores
    Whitty-Leveille, Laurence
    Reynier, Nicolas
    Lariviere, Dominic
    HYDROMETALLURGY, 2018, 177 : 187 - 196
  • [3] Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes
    Pan, Jinhe
    Hassas, Behzad Vaziri
    Rezaee, Mohammad
    Zhou, Changchun
    Pisupati, Sarma V.
    JOURNAL OF CLEANER PRODUCTION, 2021, 284
  • [4] Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes
    Pan, Jinhe
    Hassas, Behzad Vaziri
    Rezaee, Mohammad
    Zhou, Changchun
    Pisupati, Sarma V.
    Journal of Cleaner Production, 2021, 284
  • [5] Recovery of rare earth elements from the wet process phosphoric acid
    Lokshin, E. P.
    Tareeva, O. A.
    Elizarova, I. R.
    Kalinnikov, V. T.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2015, 88 (01) : 1 - 12
  • [6] Recovery of rare earth elements from the wet process phosphoric acid
    E. P. Lokshin
    O. A. Tareeva
    I. R. Elizarova
    V. T. Kalinnikov
    Russian Journal of Applied Chemistry, 2015, 88 : 1 - 12
  • [7] Selectively leaching the iron-removed bauxite residues with phosphoric acid for enrichment of rare earth elements
    Deng, Bona
    Li, Guanghui
    Luo, Jun
    Ye, Qing
    Liu, Mingxia
    Rao, Mingjun
    Jiang, Tao
    Bauman, Lukas
    Zhao, Boxin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 227
  • [8] Leaching kinetics of rare earth elements and fluoride from mixed rare earth concentrate after roasting with calcium hydroxide and sodium hydroxide
    Huang, Yukun
    Dou, Zhihe
    Zhang, Ting-an
    Liu, Jiang
    HYDROMETALLURGY, 2017, 173 : 15 - 21
  • [9] Recovery of rare earth elements from wet process extraction phosphoric acid
    E. P. Lokshin
    O. A. Tareeva
    I. R. Elizarova
    Russian Journal of Applied Chemistry, 2013, 86 : 623 - 628
  • [10] Leaching of rare earth elements from phosphogypsum
    Lutke, Sabrina F.
    Oliveira, Marcos L. S.
    Waechter, Samuel R.
    Silva, Luis F. O.
    Cadaval, Tito R. S.
    Duarte, Fabio A.
    Dotto, Guilherme L.
    CHEMOSPHERE, 2022, 301