Low methyl-esterified ginseng homogalacturonan pectins promote longevity of Caenorhabditis elegans via impairing insulin/IGF-1 signalling

被引:0
|
作者
Wang, Jiayi [1 ,2 ]
Wang, Yuan [1 ]
Xu, Xuejiao [1 ]
Song, Chengcheng [1 ]
Zhou, Yuwei [1 ]
Xue, Dongxue [1 ]
Feng, Zhangkai [1 ]
Zhou, Yifa [1 ]
Li, Xiaoxue [1 ]
机构
[1] Northeast Normal Univ, Sch Life Sci, Key Lab Mol Epigenet, Engn Res Ctr Glycoconjugates,Minist Educ, Changchun 130024, Peoples R China
[2] Changchun Univ Technol, Sch Chem & Life Sci, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
HG pectin; Lifespan extension; IIS pathway; Degree of methyl-esterification; Ginseng; C; ELEGANS; OXIDATIVE STRESS; CITRUS PECTIN; LIFE-SPAN; POLYSACCHARIDES; ANTIOXIDANT; SUPPRESSION; INHIBITION; MECHANISM; RESPONSES;
D O I
10.1016/j.carbpol.2024.122600
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Panax ginseng C. A. Meyer (ginseng) is a medicinal plant widely used for promoting longevity. Recently, homogalacturonan (HG) domain-rich pectins purified from some plants have been reported to have anti-agingrelated activities, leading us to explore the longevity-promoting activity of the HG pectins from ginseng. In this study, we discovered that two of low methyl-esterified ginseng HG pectins (named as WGPA-2-HG and WGPA-3HG), whose degree of methyl-esterification (DM) was 16 % and 8 % respectively, promoted longevity in Caenorhabditis elegans. Results showed that WGPA-2-HG/WGPA-3-HG impaired insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) pathway, thereby increasing the nuclear accumulation of transcription factors SKN-1/ Nrf2 and DAF-16/FOXO and enhancing the expression of relevant anti-aging genes. BLI and ITC analysis showed that the insulin-receptor binding, the first step to activate IIS pathway, was impeded by the engagement of WGPA-2-HG/WGPA-3-HG with insulin. By chemical modifications, we found that high methyl-esterification of WGPA-2-HG/WGPA-3-HG was detrimental for their longevity-promoting activity. These findings provided novel insight into the precise molecular mechanism for the longevity-promoting effect of ginseng pectins, and suggested a potential to utilize the ginseng HG pectins with appropriate DM values as natural nutrients for increasing human longevity.
引用
收藏
页数:13
相关论文
共 29 条
  • [1] Gengnianchun Extends the Lifespan of Caenorhabditis elegans via the Insulin/IGF-1 Signalling Pathway
    Meng, Fanhui
    Li, Jun
    Rao, Yanqiu
    Wang, Wenjun
    Fu, Yan
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2018, 2018
  • [2] Caloric restriction, Ins/IGF-1 signalling and longevity in the nematode Caenorhabditis elegans
    Houthoofd, K
    Braeckman, BP
    De Vreese, A
    Van Eygen, S
    Lenaerts, I
    Brys, K
    Matthijssens, F
    Vanfleteren, JR
    BELGIAN JOURNAL OF ZOOLOGY, 2004, 134 (02): : 79 - 84
  • [3] Untangling Longevity, Dauer, and Healthspan in Caenorhabditis elegans Insulin/IGF-1-Signalling
    Ewald, Collin Yves
    Castillo-Quan, Jorge Ivan
    Blackwell, T. Keith
    GERONTOLOGY, 2018, 64 (01) : 96 - 104
  • [4] Zinc transporters maintain longevity by influencing insulin/IGF-1 activity in Caenorhabditis elegans
    Novakovic, Stevan
    Molesworth, Luke W.
    Gourley, Taylin E.
    Boag, Peter R.
    Davis, Gregory M.
    FEBS LETTERS, 2020, 594 (09) : 1424 - 1432
  • [5] Longevity-promoting properties of ginger extract in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway
    Xu, Tingting
    Tao, Mingfang
    Li, Rong
    Xu, Xiaoyun
    Pan, Siyi
    Wu, Ting
    FOOD & FUNCTION, 2022, 13 (19) : 9893 - 9903
  • [6] Lysine-glucose Maillard reaction products promote longevity and stress tolerance in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway
    Yokoyama, Issei
    Setoyama, Ou
    Urakawa, Ayumi
    Sugawara, Momo
    Jia, Yaqi
    Komiya, Yusuke
    Nagasao, Jun
    Arihara, Keizo
    JOURNAL OF FUNCTIONAL FOODS, 2021, 87
  • [7] Caenorhabditis elegans Model to Test the Effect of Pharmacological Drugs on IGF-1/insulin Signalling Pathway
    Kumar, Jitendra
    Awasthi, Anjali
    Park, Kyung-Chae
    Singh, Vijay Kumar
    Prasad, Birendra
    JOURNAL OF DIABETES & METABOLISM, 2015, 6 (11)
  • [8] Rosavin extends lifespan via the insulin/IGF-1 signaling pathway in Caenorhabditis elegans
    Liang, Lina
    Zheng, Tianyu
    Fan, Xiaoxiao
    Gao, Yating
    Chen, Xu
    Wang, Bo
    Liu, Yonggang
    Zhang, Yuanyuan
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (07) : 5275 - 5287
  • [9] Combinatorial transcriptomic and genetic dissection of insulin/IGF-1 signaling-regulated longevity in Caenorhabditis elegans
    Ham, Seokjin
    Kim, Sieun S.
    Park, Sangsoon
    Kwon, Hyunwoo C.
    Ha, Seokjun G.
    Bae, Yunkyu
    Lee, Gee-Yoon
    Lee, Seung-Jae V.
    AGING CELL, 2024, 23 (07)
  • [10] Nuciferine Promotes Longevity and Fitness in Caenorhabditis elegans through the Regulation of the Insulin/IGF-1 Signaling Pathway
    Xu, Yan
    Miao, Yuanxin
    Li, Rong
    JOURNAL OF FOOD BIOCHEMISTRY, 2024, 2024