Erosion of surfaces by trapped vortices

被引:0
|
作者
Hirst, Courteney [1 ]
McDonald, N. R. [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Conformal maps; Erosion; Free boundary; Vortex dynamics; BODY; SCALLOPS;
D O I
10.1007/s10665-024-10396-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two two-dimensional free boundary problems describing the erosion of solid surfaces by the flow of inviscid fluid in the presence of trapped vortices are considered. The first problem tackles an initially flat, infinite fluid-solid interface with uniform flow at infinity and a vortex in equilibrium above the surface. The second involves flow around a finite body with a trailing F & ouml;ppl-type vortex pair. The conformal invariance of the complex potential permits both problems to be formulated as a Polubarinova-Galin (PG) type equation in which the time-dependent eroding surface in the physical z-plane is mapped to the fixed boundary of the zeta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}-disk. The Hamiltonian governing the equilibrium position of the vortex (or vortex pair in the second problem) is also found from the same map. In each problem, the PG equation giving the conformal map is found numerically and the time-dependent evolution of the interface and vortex location is determined. Different models governing the erosion of the interface are investigated in which the normal velocity of the boundary depends on some given function of the fluid flow velocity at the boundary. Typically, in the infinite surface case, erosion leads to the formation of a symmetric valley beneath the vortex which, in turn, moves downward toward the interface. A finite body undergoes erosion which is asymmetric in the flow direction leading to a flattening of the lee surface of the body so displaying some similarity to the experiments and associated viscous theory of Ristroph et al, Moore et al (Proc Natl Acad Sci 109(48):19606-19609, 2012, Phys Fluids 25(11):116602, 2013).
引用
收藏
页数:24
相关论文
共 50 条
  • [1] TRAPPED VORTICES IN A SUPERCONDUCTING MICROBRIDGE
    PARK, GS
    CUNNINGHAM, CE
    CABRERA, B
    HUBER, ME
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (02) : 3021 - 3024
  • [2] TRAPPED VORTICES IN ROTATING FLOW
    JOHNSON, ER
    [J]. JOURNAL OF FLUID MECHANICS, 1978, 86 (MAY) : 209 - 224
  • [3] TRAPPED VORTICES IN ROTATING FLOW
    JOHNSON, ER
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1977, 58 (09): : 906 - 906
  • [4] Active Control of Flows with Trapped Vortices
    Kerimbekov, R. M.
    Tutty, O. R.
    [J]. IUTAM SYMPOSIUM ON UNSTEADY SEPARATED FLOWS AND THEIR CONTROL, 2009, 14 : 575 - 580
  • [5] Vortices in a trapped dilute Bose condensate
    Fetter, AL
    [J]. CONDENSED MATTER THEORIES, VOL 17, 2003, 17 : 3 - 14
  • [6] Vortices and turbulence in trapped atomic condensates
    White, Angela C.
    Anderson, Brian P.
    Bagnato, Vanderlei S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 : 4719 - 4726
  • [7] VORTICES TRAPPED IN DISCRETE JOSEPHSON RINGS
    VANDERZANT, HSJ
    ORLANDO, TP
    WATANABE, S
    STROGATZ, SH
    [J]. PHYSICA B, 1994, 203 (3-4): : 490 - 496
  • [8] Trapped vortices in multiply connected domains
    Nelson, Rhodri B.
    Sakajo, Takashi
    [J]. FLUID DYNAMICS RESEARCH, 2014, 46 (06)
  • [9] Trapped vortices and a favourable pressure gradient
    Chernyshenko, SI
    Galletti, B
    Lo, AI
    Zannetti, L
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 482 : 235 - 255
  • [10] TRAPPED SURFACES
    Senovilla, Jose M. M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (11): : 2139 - 2168