Preserving the Hermiticity of the one-body density matrix for a non-interacting Fermi gas

被引:0
|
作者
Farrell, L. M. [1 ,2 ]
Eaton, D. [2 ,3 ]
Chitnelawong, P. [2 ,4 ]
Bencheikh, K. [5 ,6 ]
van Zyl, B. P. [2 ]
机构
[1] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
[2] St Francis Xavier Univ, Dept Phys, Antigonish, NS B2G 2W5, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
[5] Set 1 Univ Ferhat Abbas, Fac Sci, Dept Phys, Setif, Algeria
[6] Lab Quantum Phys & Dynam Syst, Setif, Algeria
基金
加拿大自然科学与工程研究理事会;
关键词
density-functional theory; semiclassical; h-expansion; Hermitian; Fermi gas; GRADIENT EXPANSION; FUNCTIONAL THEORY; EXCHANGE;
D O I
10.1088/1751-8121/ad74be
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-body density matrix (ODM) for a zero temperature non-interacting Fermi gas can be approximately obtained in the semiclassical regime through different h-expansion techniques. One would expect that each method of approximating the ODM should yield equivalent density matrices which are both Hermitian and idempotent to any order in h. However, the Kirzhnits and Wigner-Kirkwood methods do not yield these properties, while the Grammaticos-Voros method does. Here we show explicitly, for arbitrary d-dimensions through an appropriate change into symmetric coordinates, that each method is indeed identical, Hermitian, and idempotent. This change of variables resolves the inconsistencies between the various methods, showing that the non-Hermitian and non-idempotent behavior of the Kirzhnits and Wigner-Kirkwood methods is an artifact of performing a non-symmetric truncation to the semiclassical h-expansions. Our work also provides the first explicit derivation of the d-dimensional Grammaticos-Voros ODM, originally proposed by Redjati et al (2019 J. Phys. Chem. Solids 134 313-8) based on their d=1,2,3,4 expressions.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Preserving the Hermiticity of the One-Body Density Matrix for a Non-Interacting Fermi Gas
    Farrell, L.M.
    Eaton, D.
    Chitnelawong, P.
    Bencheikh, K.
    van Zyl, B.P.
    arXiv,
  • [2] Extended Thomas-Fermi approximation to the one-body density matrix
    Soubbotin, VB
    Viñas, X
    NUCLEAR PHYSICS A, 2000, 665 (3-4) : 291 - 317
  • [3] One-body density matrix in semiclassical approximation
    Soubbotin, VB
    Vinas, X
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 2001, 65 (01): : 92 - 97
  • [4] THE ONE-BODY DENSITY-MATRIX IN HELIUM DROPLETS
    CHIN, SA
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1993, 93 (5-6) : 921 - 934
  • [5] Eigenvalues of the one-body density matrix for correlated condensates
    Jensen, A. S.
    Kjaergaard, T.
    Thogersen, M.
    Fedorov, D. V.
    NUCLEAR PHYSICS A, 2007, 790 : 723C - 727C
  • [6] Correlated one-body density matrix of boson superfluids
    Pantforder, R
    Lindenau, T
    Ristig, ML
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1997, 108 (3-4) : 245 - 266
  • [7] Correlated one-body density matrix of boson superfluids
    R. Pantförder
    T. Lindenau
    M. L. Ristig
    Journal of Low Temperature Physics, 1997, 108 : 245 - 266
  • [8] One-body density matrix and momentum distribution of strongly interacting one-dimensional spinor quantum gases
    Yang, Li
    Pu, Han
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [9] Correlated one-body density matrix of Boson superfluids
    Universitaet zu Koeln, Koeln, Germany
    J Low Temp Phys, 1600, 3-4 (245-266):
  • [10] Performance of one-body reduced density-matrix functionals for the homogeneous electron gas
    Lathiotakis, N. N.
    Helbig, N.
    Gross, E. K. U.
    PHYSICAL REVIEW B, 2007, 75 (19):