On the fractional pseudo-parabolic p(ξ)-Laplacian equation

被引:0
|
作者
Sousa, J. Vanterler da C. [1 ]
机构
[1] DEMATI UEMA, Dept Math, Aerosp Engn, PPGEA UEMA, BR-65054 Sao Luis, MA, Brazil
来源
关键词
Pseudo-parabolic; Variable exponent; Global existence; Logarithmic nonlinearity; Fractional p(xi)-Laplacian; P-LAPLACIAN EQUATION; SEMILINEAR HEAT-EQUATION; TIME BLOW-UP; GLOBAL EXISTENCE; NEHARI MANIFOLD;
D O I
10.1016/j.bulsci.2024.103519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of a global solution of the initial pseudo-parabolic p(xi)-Laplacian equation with logarithmic nonlinearity, using the Aubin-Lions-Simon lemma and logarithmic inequality. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] AN INVERSE PROBLEM FOR THE PSEUDO-PARABOLIC EQUATION WITH P-LAPLACIAN
    Antontsev, Stanislav Nikolaevich
    Aitzhanov, Serik Ersultanovich
    Ashurova, Guzel Rashitkhuzhakyzy
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (02): : 399 - 414
  • [2] Global existence and finite time blowup for a fractional pseudo-parabolic p-Laplacian equation
    Cheng, Jiazhuo
    Wang, Qiru
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (04) : 1916 - 1940
  • [3] Global existence and finite time blowup for a fractional pseudo-parabolic p-Laplacian equation
    Jiazhuo Cheng
    Qiru Wang
    [J]. Fractional Calculus and Applied Analysis, 2023, 26 : 1916 - 1940
  • [4] Classification of Initial Energy to a Pseudo-parabolic Equation with p(x)-Laplacian
    Sun, Xizheng
    Liu, Bingchen
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (03) : 873 - 899
  • [5] Classification of Initial Energy to a Pseudo-parabolic Equation with p(x)-Laplacian
    Xizheng Sun
    Bingchen Liu
    [J]. Journal of Dynamical and Control Systems, 2023, 29 : 873 - 899
  • [6] Global existence and regularity for a pseudo-parabolic equation with p(x, t)-Laplacian
    Antontsev, Stanislav
    Kuznetsov, Ivan
    Shmarev, Sergey
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [7] Blow up and exponential growth for a pseudo-parabolic equation with p(x)-Laplacian and variable exponents
    Di, Huafei
    Qian, Xian
    Peng, Xiaoming
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 138
  • [8] On a final value problem for a nonhomogeneous fractional pseudo-parabolic equation
    Nguyen Hoang Luc
    Kumar, Devendra
    Le Thi Diem Hang
    Nguyen Huu Can
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 4353 - 4364
  • [9] On a final value problem for a nonhomogeneous fractional pseudo-parabolic equation
    Luc, Nguyen Hoang
    Kumar, Devendra
    Diem Hang, Le Thi
    Can, Nguyen Huu
    [J]. Can, Nguyen Huu (nguyenhuucan@tdtu.edu.vn), 1600, Elsevier B.V. (59): : 4353 - 4364
  • [10] ON A FINAL VALUE PROBLEM FOR A NONLINEAR FRACTIONAL PSEUDO-PARABOLIC EQUATION
    Vo Van Au
    Jafari, Hossein
    Hammouch, Zakia
    Nguyen Huy Tuan
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (01): : 1709 - 1734