Joint optimization of communication and mission performance for multi-UAV collaboration network: A multi-agent reinforcement learning method

被引:0
|
作者
He, Yuan [1 ]
Xie, Jun [1 ]
Hu, Guyu [1 ]
Liu, Yaqun [1 ]
Luo, Xijian [1 ]
机构
[1] Army Engn Univ PLA, Coll Command & Control Engn, Nanjing 210007, Jiangsu, Peoples R China
关键词
UAV network; Relay UAV; Mission UAV; Multi-UAV collaboration; Trajectory Planning and power control; Multi-agent reinforcement learning; TRAJECTORY DESIGN; POWER-CONTROL; RELAY; DEPLOYMENT;
D O I
10.1016/j.adhoc.2024.103602
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In emergency rescue, target search and other mission scenarios with Unmanned Aerial Vehicles (UAVs), the Relay UAVs (RUs) and Mission UAVs (MUs) can collaborate to accomplish tasks in unknown environments. In this paper, we investigate the problem of trajectory planning and power control for the MU and RU collaboration. Firstly, considering the characteristics of multi-hop data transmission between the MU and Ground Control Station, a multi-UAV collaborative coverage model is designed. Meanwhile, a UAV control algorithm named MUTTO is proposed based on multi-agent reinforcement learning. In order to solve the problem of the unknown information about the number and locations of targets, the geographic coverage rate is used to replace the target coverage rate for decision making. Then, the reward functions of two types of UAVs are designed separately for the purpose of better cooperation. By simultaneously planning the trajectory and transmission power of the RU and MU, the mission target coverage rate and network transmission rate are maximized while the energy consumption of the UAV is minimized. Finally, numerical simulations results show that MUTTO can solve the UAV network control problem in an efficient way and has better performance than the benchmark method.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforcement Learning
    Qie, Han
    Shi, Dianxi
    Shen, Tianlong
    Xu, Xinhai
    Li, Yuan
    Wang, Liujing
    IEEE ACCESS, 2019, 7 : 146264 - 146272
  • [2] Multi-UAV Escape Target Search: A Multi-Agent Reinforcement Learning Method
    Liao, Guang
    Wang, Jian
    Yang, Dujia
    Yang, Junan
    SENSORS, 2024, 24 (21)
  • [3] Optimization Design of Multi-UAV Communication Network Based on Reinforcement Learning
    Cao, Zhengyang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [4] Multi-UAV Redeployment Optimization Based on Multi-Agent Deep Reinforcement Learning Oriented to Swarm Performance Restoration
    Wu, Qilong
    Geng, Zitao
    Ren, Yi
    Feng, Qiang
    Zhong, Jilong
    SENSORS, 2023, 23 (23)
  • [5] Energy-Efficient Multi-UAV Network using Multi-Agent Deep Reinforcement Learning
    Ju, Hyungyu
    Shim, Byonghyo
    2022 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM, APWCS, 2022, : 70 - 74
  • [6] Multi-UAV Path Planning and Following Based on Multi-Agent Reinforcement Learning
    Zhao, Xiaoru
    Yang, Rennong
    Zhong, Liangsheng
    Hou, Zhiwei
    DRONES, 2024, 8 (01)
  • [7] An evolutionary multi-agent reinforcement learning algorithm for multi-UAV air combat
    Wang, Baolai
    Gao, Xianzhong
    Xie, Tao
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [8] Joint UAV trajectory and communication design with heterogeneous multi-agent reinforcement learning
    Xuanhan ZHOU
    Jun XIONG
    Haitao ZHAO
    Xiaoran LIU
    Baoquan REN
    Xiaochen ZHANG
    Jibo WEI
    Hao YIN
    Science China(Information Sciences), 2024, 67 (03) : 225 - 245
  • [9] Joint UAV trajectory and communication design with heterogeneous multi-agent reinforcement learning
    Zhou, Xuanhan
    Xiong, Jun
    Zhao, Haitao
    Liu, Xiaoran
    Ren, Baoquan
    Zhang, Xiaochen
    Wei, Jibo
    Yin, Hao
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (03)
  • [10] Multi-Agent Deep Reinforcement Learning for Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 2232 - 2237