Perovskite oxides with Pb at B-site as Li-ion battery anodes

被引:2
|
作者
Atif, Shahan [1 ]
Chaupatnaik, Anshuman [1 ]
Rao, Ankit [2 ]
Padhy, Abhisek [1 ]
Chintha, Sridivya [1 ]
Nukala, Pavan [2 ]
Fichtner, Maximilian [3 ,4 ]
Barpanda, Prabeer [1 ,3 ,4 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Faraday Mat Lab FaMaL, Bangalore 560012, India
[2] Indian Inst Sci, Ctr Nano Sci & Engn, Bangalore 560012, India
[3] Helmholtz Inst Ulm HIU, Electrochem Energy Storage, D-89081 Ulm, Germany
[4] Karlsruhe Inst Technol KIT, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
Li-ion batteries; Anodes; Perovskites; Conversion; Alloying; Electron microscopy; LITHIUM-ION; HIGH-CAPACITY; ELECTROCHEMICAL LITHIATION; TIN; STORAGE; ELECTRODES; LEAD; NANOPARTICLES; PERFORMANCE; GRAPHITE;
D O I
10.1016/j.electacta.2024.144838
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Perovskite ceramic oxides (ABO3) have emerged as strong contenders against graphite anodes in non-aqueous metal-ion batteries. Exploring perovskites, we studied lithium insertion in barium lead oxide (BaPbO3) and strontium lead oxide (SrPbO3) perovskites, where lead (Pb4+) occupies the B-site. BaPbO3 and SrPbO3, mass produced by solid-state or solution-combustion route, delivered reversible capacities upto 333 mAh/g and 339 mAh/g corresponding to 4.3 and 4.9 lithium uptake, respectively at room temperature. Among them, BaPbO3 showed stable cycling for 50 cycles. Furthermore, at 50 0C, BaPbO3 delivers a first charge capacity of 382 mAh/g (or 5.6 lithium per formula unit) maintaining excellent stability beyond 50 cycles. Ex situ diffraction and microscopy studies confirm charge storage occurs via initial conversion (PbIV/PbII -> Pb0) followed by reversible (de)alloying (Li-Pb) reaction. These results showcase perovskites as a promising family of Li-ion battery anodes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Nanocomposite Li-ion battery anodes produced by the partial reduction of mixed oxides
    Limthongkul, P
    Wang, H
    Chiang, YM
    CHEMISTRY OF MATERIALS, 2001, 13 (07) : 2397 - 2402
  • [2] Li-ion battery anodes printed by rotogravure
    Pekarovicova, Alexandra
    Matthew, Kevin
    Mateo, Jorge Vicco
    Al-Ajlouni, Kholoud
    Fleming, Paul D.
    JOURNAL OF PRINT AND MEDIA TECHNOLOGY RESEARCH, 2023, 12 (01): : 7 - 14
  • [3] Electrochemical characterization Li-ion battery Sn anodes
    Co, Anne
    Liu, Danny
    Black, Jennifer
    Casaday, Amy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [4] Methylammonium Lead Bromide Perovskite Battery Anodes Reversibly Host High Li-Ion Concentrations
    Vicente, Nuria
    Garcia-Belmonte, Germa
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (07): : 1371 - 1374
  • [5] Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes
    Nam, Ki-Hun
    Jeong, Sangmin
    Yu, Byeong-Chul
    Choi, Jeong-Hee
    Jeon, Ki-Joon
    Park, Cheol-Min
    ACS NANO, 2022, 16 (09) : 13704 - 13714
  • [6] Nanostructured metal oxides for anodes of Li-ion rechargeable batteries
    Au, Ming
    Adams, Thad
    JOURNAL OF MATERIALS RESEARCH, 2010, 25 (08) : 1649 - 1655
  • [7] Tin oxides:: New anodes for Li-ion cells.
    Morales, J
    Sánchez, L
    BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 1999, 38 (06): : 615 - 620
  • [8] Nanostructured metal oxides for anodes of Li-ion rechargeable batteries
    Ming Au
    Thad Adams
    Journal of Materials Research, 2010, 25 : 1649 - 1655
  • [9] Recent studies on metal oxides as anodes for Li-ion batteries
    Sharma, N
    Rao, GVS
    Chowdari, BVR
    SOLID STATE IONICS: THE SCIENCE AND TECHNOLOGY OF IONS IN MOTION, 2004, : 411 - 424
  • [10] α-Graphyne nanotubes as a promising material for Li-ion battery anodes
    Bahrami, Mina
    Momen, Fatemeh
    Shayeganfar, Farzaneh
    Ramazani, Ali
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 240