Classification of E-Waste Types Using Machine Learning and Digital Image Processing

被引:0
|
作者
Ivkovic, Ratko [1 ,2 ]
Petrovic, Mile [1 ]
Spalevic, Petar [1 ]
Milivojevic, Zoran [2 ]
机构
[1] Univ Pristina Kosovska Mitrov, Fac Tech Sci, Knjaza Milosa 7, Kosovska Mitrovica 38220, Serbia
[2] MB Univ, Dept Informat Technol, Prote Mateje br 21, Beograd 11111, Serbia
来源
PRZEGLAD ELEKTROTECHNICZNY | 2024年 / 100卷 / 09期
关键词
electronic waste; convolutional neural networks; computer vision; waste classification;
D O I
10.15199/48.2024.09.55
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper explores the application of deep learning and computer vision techniques for automated classification and detection of electronic waste (e-waste). A system based on convolutional neural networks (CNN) and faster R-CNN is developed for analyzing e-waste images and extracting information about equipment type and dimensions. The experiment is conducted on a dataset of 500 real-world images of three key e-waste categories - refrigerators, kitchen stoves and TVs. Results demonstrate high classification accuracy of 92% using CNN and 91% detection accuracy with R-CNN. The obtained data enables more precise waste collection planning. The main conclusion is that deep learning holds great potential for improving e-waste management systems.
引用
收藏
页码:282 / 286
页数:5
相关论文
共 50 条
  • [1] Classification of e-waste using machine learning-assisted laser-induced breakdown spectroscopy
    Ali, Zahid
    Jamil, Yasir
    Anwar, Hafeez
    Sarfraz, Raja Adil
    [J]. WASTE MANAGEMENT & RESEARCH, 2024,
  • [2] Electrofused Magnesium Oxide Classification Using Digital Image Processing and Machine Learning Techniques
    Ali, A. B. M. Shawkat
    Pun, W. K. Daniel
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-3, 2009, : 1449 - 1454
  • [3] Intelligent system for solid waste classification using combination of image processing and machine learning models
    Abu-Qdais, Hani
    Shatnawi, Nawras
    AL-Alamie, Esra'a
    [J]. JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2024,
  • [4] Skin Cancer Classification Using Image Processing and Machine Learning
    Javaid, Arslan
    Sadiq, Muhammad
    Akram, Faraz
    [J]. PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 439 - 444
  • [5] Rice Grain Classification using Image Processing & Machine Learning Techniques
    Arora, Biren
    Bhagat, Nimisha
    Arcot, Sonali
    Saritha, L. R.
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 205 - 208
  • [6] Weedy Rice Classification Using Image Processing and a Machine Learning Approach
    Ruslan, Rashidah
    Khairunniza-Bejo, Siti
    Jahari, Mahirah
    Ibrahim, Mohd Firdaus
    [J]. AGRICULTURE-BASEL, 2022, 12 (05):
  • [7] Geographies of E-waste: Towards a Political Ecology Approach to E-waste and Digital Technologies
    Pickren, Graham
    [J]. GEOGRAPHY COMPASS, 2014, 8 (02): : 111 - 124
  • [8] Centralized pilot for e-waste processing
    Tang, Ya
    [J]. NATURE, 2016, 538 (7623) : 41 - 41
  • [9] Digital image processing combined with machine learning: A new strategy for brown sugar classification
    Alves, Vandressa
    dos Santos, Jeferson M.
    Pinto, Edgar
    Ferreira, Isabel M. P. L. V. O.
    Lima, Vanderlei Aparecido
    Felsner, Maria L.
    [J]. MICROCHEMICAL JOURNAL, 2024, 196
  • [10] Embedded Machine Learning for Mango Classification Using Image Processing and Support Vector Machine
    Minh Thanh Vo
    Tuan Due Nguyen
    Dang, Nhan T.
    [J]. PROCEEDINGS OF 2019 6TH NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT (NAFOSTED) CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2019, : 279 - 284