Integrating adaptive learning with post hoc model explanation and symbolic regression to build interpretable surrogate models

被引:1
|
作者
Biswas, Ankita [1 ]
Liu, Shunshun [1 ]
Garg, Sunidhi [1 ]
Morshed, Md Golam [2 ]
Vakili, Hamed [3 ,4 ]
Ghosh, Avik W. [2 ,5 ]
Balachandran, Prasanna V. [1 ,6 ]
机构
[1] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[2] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[3] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[4] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[5] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[6] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
关键词
Computation/computing; Magnetic; Informatics; Machinelearning; Artificial intelligence; Predictive;
D O I
10.1557/s43579-024-00633-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a materials informatics workflow to build an interpretable surrogate model for micromagnetic simulations. Our goal is to predict the energy barrier of a moving isolated skyrmion in rare-earth-free Mn4N. Our approach integrates adaptive learning with post hoc model explanation and symbolic regression methods. We discuss an unexplored acquisition function (information condensing active learning) within the adaptive learning loop and compare it with the known standard deviation function for efficient navigation of the search space. Model-agnostic post hoc explanation techniques then uncover trends learned by the trained model, which we then leverage to constrain the expressions used for symbolic regression.
引用
收藏
页码:983 / 989
页数:7
相关论文
共 6 条
  • [1] A Responsible Machine Learning Workflow with Focus on Interpretable Models, Post-hoc Explanation, and Discrimination Testing
    Gill, Navdeep
    Hall, Patrick
    Montgomery, Kim
    Schmidt, Nicholas
    INFORMATION, 2020, 11 (03)
  • [2] An Analysis of the Ingredients for Learning Interpretable Symbolic Regression Models with Human-in-The-loop and Genetic Programming
    Nadizar G.
    Rovito L.
    De Lorenzo A.
    Medvet E.
    Virgolin M.
    ACM Transactions on Evolutionary Learning and Optimization, 2024, 4 (01):
  • [3] Integrating machine learning with symbolic reasoning to build an explainable AI model for stroke prediction
    Prentzas, Nicoletta
    Nicolaides, Andrew
    Kyriacou, Efthyvoulos
    Kakas, Antonis
    Pattichis, Constantinos S.
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 817 - 821
  • [4] Polishing the black box: flexible model-based partitioning surrogate models for interpretable machine learning model
    Khasawneh, Tariq
    Azzeh, Mohammad
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [5] Providing Post-Hoc Explanation for Node Representation Learning Models Through Inductive Conformal Predictions
    Park, Hogun
    IEEE ACCESS, 2023, 11 : 1202 - 1212
  • [6] Machine Learning Model Outperforms Linear Regression Models for 1-and 3-Year Post-Transplant Survival: Is This the Future?
    Pettit, R. W.
    Corr, S. J.
    Havelka, J.
    Rana, A.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2020, 20 : 669 - 669