Deep NURBS-admissible physics-informed neural networks

被引:0
|
作者
Saidaoui, Hamed [1 ,4 ,5 ]
Espath, Luis [2 ]
Tempone, Raul [1 ,3 ,4 ]
机构
[1] Rhein Westfal TH Aachen, Dept Math, Gebaude-1953 1OG,Pontdriesch 14-16,161, D-52062 Aachen, Germany
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[3] King Abdullah Univ Sci & Technol KAUST, Elect & Math Sci & Engn Div CEMSE, Comp, Thuwal 239556900, Saudi Arabia
[4] Rhein Westfal TH Aachen, Alexander Von Humboldt Prof Math Uncertainty Quant, Aachen, Germany
[5] Halliburton, Dhahran 34464, Saudi Arabia
关键词
PINNs; NURBS; PDEs; Deep neural networks; ALGORITHM;
D O I
10.1007/s00366-024-02040-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we propose a new numerical scheme for physics-informed neural networks (PINNs) that enables precise and inexpensive solutions for partial differential equations (PDEs) in case of arbitrary geometries while strongly enforcing Dirichlet boundary conditions. The proposed approach combines admissible NURBS parametrizations (admissible in the calculus of variations sense, that is, satisfying the boundary conditions) required to define the physical domain and the Dirichlet boundary conditions with a PINN solver. Therefore, the boundary conditions are automatically satisfied in this novel Deep NURBS framework. Furthermore, our sampling is carried out in the parametric space and mapped to the physical domain. This parametric sampling works as an importance sampling scheme since there is a concentration of points in regions where the geometry is more complex. We verified our new approach using two-dimensional elliptic PDEs when considering arbitrary geometries, including non-Lipschitz domains. Compared to the classical PINN solver, the Deep NURBS estimator has a remarkably high accuracy for all the studied problems. Moreover, a desirable accuracy was obtained for most of the studied PDEs using only one hidden layer of neural networks. This novel approach is considered to pave the way for more effective solutions for high-dimensional problems by allowing for a more realistic physics-informed statistical learning framework to solve PDEs.
引用
收藏
页码:4007 / 4021
页数:15
相关论文
共 50 条
  • [1] Physics-Informed Deep Neural Networks for Transient Electromagnetic Analysis
    Noakoasteen, Oameed
    Wang, Shu
    Peng, Zhen
    Christodoulou, Christos
    [J]. IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2020, 1 (01): : 404 - 412
  • [2] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    [J]. HELIYON, 2023, 9 (08)
  • [3] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    [J]. ENTROPY, 2024, 26 (08)
  • [5] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [6] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    [J]. ADVANCED PHOTONICS, 2022, 4 (06):
  • [7] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [8] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    [J]. ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [9] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    [J]. 2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [10] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    [J]. 2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,