A new epidemiological approach using machine learning based on medico-administrative database: automatic identification and prevalence estimation in heart failure

被引:0
|
作者
Mustafic, H. [1 ]
Gouysse, M. [2 ]
Dore, O. [2 ]
Perray, L. [2 ]
Maravic, M. [3 ]
Jourdain, P. [4 ]
机构
[1] Paris Saclay Univ Hosp Bicetre, AP HP, INSERM, Dept Cardiol,CESP,U1018, Le Kremlin Bicetre, France
[2] IQVIA, Ai & Data Engine, Courbevoie, France
[3] IQVIA, Real World Solut, Paris, France
[4] Paris Saclay Univ Hosp Bicetre, AP HP, Dept Cardiol, INSERM,U999, Le Kremlin Bicetre, France
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:3164 / 3164
页数:1
相关论文
共 50 条
  • [1] Machine-learning prediction of unplanned 30-day rehospitalization using the French hospital medico-administrative database
    Jaotombo, Franck
    Pauly, Vanessa
    Auquier, Pascal
    Orleans, Veronica
    Boucekine, Mohamed
    Fond, Guillaume
    Ghattas, Badih
    Boyer, Laurent
    [J]. MEDICINE, 2020, 99 (49) : E22361
  • [2] A New Epidemiologic Methodological Approach Using Machine Learning in Prevalence Estimation of CKD
    Dauvergne, Maxime
    Sigogne, Raphael R.
    Maravic, Milka
    Torres, Pablo A. Urena
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 702 - 702
  • [3] PERFORMANCE OF MACHINE LEARNING ALGORITHMS IN PREDICTING 30 DAY HEART FAILURE READMISSIONS RISK USING AN ADMINISTRATIVE CLAIMS DATABASE
    Dave, C.
    Park, H.
    Hartzema, A.
    [J]. VALUE IN HEALTH, 2017, 20 (05) : A329 - A329
  • [4] A New Automatic Identification Method of Heart Failure Using Improved Support Vector Machine Based on Duality Optimization Technique
    Geweid, Gamal G. N.
    Abdallah, Mahmoud A.
    [J]. IEEE ACCESS, 2019, 7 : 149595 - 149611
  • [5] Estimation of New York Heart Association class in Heart Failure Patients Based on Machine Learning Techniques
    Tripoliti, Evanthia E.
    Papadopoulos, Theofilos G.
    Karanasiou, Georgia S.
    Kalatzis, Fanis G.
    Bechlioulis, Aris
    Goletsis, Yorgos
    Naka, Katerina K.
    Fotiadis, Dimitrios I.
    [J]. 2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 421 - 424
  • [6] Predicting 30-Day Readmissions in Patients With Heart Failure Using Administrative Data: A Machine Learning Approach
    Sharma, Vishal
    Kulkarni, Vinaykumar
    McAlister, Finlay
    Eurich, Dean
    Keshwani, Shanil
    Simpson, Scot H.
    Voaklander, Don
    Samanani, Salim
    [J]. JOURNAL OF CARDIAC FAILURE, 2022, 28 (05) : 710 - 722
  • [7] A machine learning approach to classifying New York Heart Association (NYHA) heart failure
    Jandy, Krystian
    Weichbroth, Pawel
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] IDENTIFICATION OF FACTORS INFLUENCING HEART FAILURE MORTALITY USING MACHINE LEARNING METHODS
    Kukartsev, V. V.
    Zamolockiy, S. A.
    Khramkov, V. V.
    [J]. PROCEEDINGS OF THE TULA STATES UNIVERSITY-SCIENCES OF EARTH, 2023, 3 : 101 - 111
  • [9] A Machine Learning-Based Approach to Detect Survival of Heart Failure Patients
    Erdas, Cagatay Berke
    Olcer, Didem
    [J]. 2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [10] Using cancer case identification algorithms in medico-administrative databases: Literature review and first results from the REDSIAM Tumors group based on breast, colon, and lung cancer
    Bousquet, P. -J.
    Caillet, P.
    Coeuret-Pellicer, M.
    Goulard, H.
    Kudjawu, Y. C.
    Le Bihan, C.
    Lecuyer, A. I.
    Seguret, F.
    [J]. REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2017, 65 : S236 - S242