Swin-GA-RF: genetic algorithm-based Swin Transformer and random forest for enhancing cervical cancer classification

被引:2
|
作者
Alohali, Manal Abdullah [1 ]
El-Rashidy, Nora [2 ]
Alaklabi, Saad [3 ]
Elmannai, Hela [4 ]
Alharbi, Saleh [3 ]
Saleh, Hager [5 ,6 ,7 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh, Saudi Arabia
[2] Kafrelsheiksh Univ, Fac Artificial Intelligence, Machine Learning & Informat Retrieval Dept, Kafrelsheiksh, Egypt
[3] Shaqra Univ, Coll Sci & Humanities Dawadmi, Dept Comp Sci, Shaqra, Saudi Arabia
[4] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, Riyadh, Saudi Arabia
[5] South Valley Univ, Fac Comp & Artificial Intelligence, Hurghada, Egypt
[6] Galway Univ, Data Sci Inst, Galway, Ireland
[7] Atlantic Technol Univ, Letterkenny, Ireland
来源
FRONTIERS IN ONCOLOGY | 2024年 / 14卷
关键词
image processing; image classification; image cancer classification; Swin Transformer; CNN models; genetic algorithm; random forest;
D O I
10.3389/fonc.2024.1392301
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cervical cancer is a prevalent and concerning disease affecting women, with increasing incidence and mortality rates. Early detection plays a crucial role in improving outcomes. Recent advancements in computer vision, particularly the Swin transformer, have shown promising performance in image classification tasks, rivaling or surpassing traditional convolutional neural networks (CNNs). The Swin transformer adopts a hierarchical and efficient approach using shifted windows, enabling the capture of both local and global contextual information in images. In this paper, we propose a novel approach called Swin-GA-RF to enhance the classification performance of cervical cells in Pap smear images. Swin-GA-RF combines the strengths of the Swin transformer, genetic algorithm (GA) feature selection, and the replacement of the softmax layer with a random forest classifier. Our methodology involves extracting feature representations from the Swin transformer, utilizing GA to identify the optimal feature set, and employing random forest as the classification model. Additionally, data augmentation techniques are applied to augment the diversity and quantity of the SIPaKMeD1 cervical cancer image dataset. We compare the performance of the Swin-GA-RF Transformer with pre-trained CNN models using two classes and five classes of cervical cancer classification, employing both Adam and SGD optimizers. The experimental results demonstrate that Swin-GA-RF outperforms other Swin transformers and pre-trained CNN models. When utilizing the Adam optimizer, Swin-GA-RF achieves the highest performance in both binary and five-class classification tasks. Specifically, for binary classification, it achieves an accuracy, precision, recall, and F1-score of 99.012, 99.015, 99.012, and 99.011, respectively. In the five-class classification, it achieves an accuracy, precision, recall, and F1-score of 98.808, 98.812, 98.808, and 98.808, respectively. These results underscore the effectiveness of the Swin-GA-RF approach in cervical cancer classification, demonstrating its potential as a valuable tool for early diagnosis and screening programs.
引用
收藏
页数:18
相关论文
共 31 条
  • [1] Swin Routiformer: Moss Classification Algorithm Based on Swin Transformer With Bi-Level Routing Attention
    Li, Peichen
    Wang, Huiqin
    Wang, Zhan
    Wang, Ke
    Wang, Chong
    IEEE ACCESS, 2024, 12 : 53396 - 53407
  • [2] Efficient Lung Cancer Image Classification and Segmentation Algorithm Based on an Improved Swin Transformer
    Sun, Ruina
    Pang, Yuexin
    Li, Wenfa
    ELECTRONICS, 2023, 12 (04)
  • [3] Classification of Mobile-Based Oral Cancer Images Using the Vision Transformer and the Swin Transformer
    Song, Bofan
    Raj, Dharma K. C.
    Yang, Rubin Yuchan
    Li, Shaobai
    Zhang, Chicheng
    Liang, Rongguang
    CANCERS, 2024, 16 (05)
  • [4] A novel deep learning framework based swin transformer for dermal cancer cell classification
    Ramkumar, K.
    Medeiros, Elias Paulino
    Dong, Ani
    de Albuquerque, Victor Hugo C.
    Hassan, Md Rafiul
    Hassan, Mohammad Mehedi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [5] Few-Shot Image Classification Algorithm of Graph Neural Network Based on Swin Transformer
    Wang Kai
    Ren Jie
    Zhang Weichuan
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [6] Improved deep learning image classification algorithm based on Swin Transformer V2
    Wei, Jiangshu
    Chen, Jinrong
    Wang, Yuchao
    Luo, Hao
    Li, Wujie
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [7] Improved deep learning image classification algorithm based on Swin Transformer V2
    Wei J.
    Chen J.
    Wang Y.
    Luo H.
    Li W.
    PeerJ Computer Science, 2023, 9
  • [8] Land cover classification using random forest with genetic algorithm-based parameter optimization
    Ming, Dongping
    Zhou, Tianning
    Wang, Min
    Tan, Tian
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [9] Anomaly Classification Using Genetic Algorithm-Based Random Forest Model for Network Attack Detection
    Assiri, Adel
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 767 - 778
  • [10] CervixFormer: A Multi-scale swin transformer-Based cervical pap-Smear WSI classification framework
    Khan, Anwar
    Han, Seunghyeon
    Ilyas, Naveed
    Lee, Yong-Moon
    Lee, Boreom
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 240