Explainable AI for Mixed Data Clustering

被引:0
|
作者
Amling, Jonas [2 ]
Scheele, Stephan [1 ]
Slany, Emanuel [3 ]
Lang, Moritz [2 ]
Schmid, Ute [1 ]
机构
[1] Univ Bamberg, Bamberg, Germany
[2] Dab Daten Anal & Beratung GmbH, Deggendorf, Germany
[3] Fraunhofer Inst Integrated Circuits IIS, Erlangen, Germany
关键词
XAI; Mixed Data Clustering; Model-Agnostic;
D O I
10.1007/978-3-031-63797-1_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering, an unsupervised machine learning approach, aims to find groups of similar instances. Mixed data clustering is of particular interest since real-life data often consists of diverse data types. The unsupervised nature of clustering emphasizes the need to understand the criteria for defining and distinguishing clusters. Current explainable AI (XAI) methods for clustering focus on intrinsically explainable clustering techniques, surrogate model-based explanations utilizing established XAI frameworks, and explanations generated from inter-instance distances. However, there exists a research gap in developing post-hoc methods that directly explain clusterings without resorting to surrogate models or requiring prior knowledge about the clustering algorithm. Addressing this gap, our work introduces a model-agnostic, entropy-based Feature Importance Score for continuous and discrete data, offering direct and comprehensible explanations by highlighting key features, deriving rules, and identifying cluster prototypes. The comparison with existing XAI frameworks like SHAP and ClAMP shows that we achieve similar fidelity and simplicity, proving that mixed data clusterings can be effectively explained solely from the distributions of the features and assigned clusters, making complex clusterings comprehensible to humans.
引用
收藏
页码:42 / 62
页数:21
相关论文
共 50 条
  • [1] Data Quality and Explainable AI
    Bertossi, Leopoldo
    Geerts, Floris
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2020, 12 (02):
  • [2] Explainable AI: A review of applications to neuroimaging data
    Farahani, Farzad V.
    Fiok, Krzysztof
    Lahijanian, Behshad
    Karwowski, Waldemar
    Douglas, Pamela K.
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [3] The challenges of explainable AI in biomedical data science
    Henry Han
    Xiangrong Liu
    BMC Bioinformatics, 22
  • [4] Explainable AI for Early Detection of Health Changes Via Streaming Clustering
    Wu, Wenlong
    Keller, James M.
    Skubic, Marjorie
    Popescu, Mihail
    2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [5] Explainable AI
    Veerappa, Manjunatha
    Rinzivillo, Salvo
    ERCIM NEWS, 2023, (134):
  • [6] Explainable AI
    Anna, Monreale
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 319 : 5 - 5
  • [7] Explainable AI
    Schmid, Ute
    Wrede, Britta
    KUNSTLICHE INTELLIGENZ, 2022, 36 (3-4): : 207 - 210
  • [8] Explainable AI
    Ute Schmid
    Britta Wrede
    KI - Künstliche Intelligenz, 2022, 36 : 207 - 210
  • [9] Explainable AI
    Matsuo T.
    Todoriki M.
    Tago S.-I.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2020, 74 (01): : 30 - 34
  • [10] Clustering mixed data
    Hunt, Lynette
    Jorgensen, Murray
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (04) : 352 - 361