The seismic performance of structures relies on the behaviour of their components under cyclic loading, and a careful calibration of ductility, stiffness, and strength of replaceable links within eccentrically braced frames, acting as "seismic fuses" is essential to ensure energy dissipation capacity of the structure. The use of stainless steel for such dissipative members presents a promising strategy for enhancing structural response under seismic loads, by exploiting its high ductility, excellent toughness, and sustainability. The experimental investigations presented in this paper explore the behaviour of 1.4404 (AISI 316L) stainless steel shear links under cyclic loading conditions, with respect to mild carbon steel S235 links. Experimental specimens include one-sided, double-sided stiffened, and unstiffened links, in order to allow the assessment of these configuration features. Performance of mild and stainless steel links is assessed in terms of ductility, resistance, strain-hardening, deformation capacity, failure mechanism, and energy dissipation. Stiffened stainless steel links are characterised by significantly larger strain hardening than the corresponding mild steel ones and have a superior energy dissipation capacity. However, the improvement of cyclic ductility of stainless steel links over mild steel ones is modest in comparison with the corresponding material ultimate elongation at fracture.