Effect of WC addition on microstructure and properties of laser melting deposited Ti6Al4V

被引:0
|
作者
Guo, Yanhua [1 ]
Lu, Xianxiang [1 ]
Han, Wei [1 ]
Min, Jin [2 ]
Dai, Guoqing [1 ]
Sun, Zhonggang [1 ]
Chang, Hui [1 ]
Xia, Yidong [2 ]
机构
[1] Nanjing Tech Univ, Tech Inst Adv Mat, Coll Mat Sci & Technol, Nanjing 210009, Peoples R China
[2] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
WC; Laser melting deposition; Microstructure; Hardness; Wear resistance; WEAR-RESISTANCE; TITANIUM-ALLOY; TI; MECHANISM;
D O I
10.1016/j.matchar.2024.114344
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Titanium alloys are generally characterized by low surface hardness, poor thermal conductivity, high friction coefficients and susceptibility to adhesive wear, which significantly hinder their industrial applications. To address this issue, we enhance the wear resistance of titanium alloys by incorporating nano WC particles. However, the optimal amount of WC to be added to titanium alloys remains unexplored. In this study, we prepared Ti6Al4V-xWC (wt%) (x = 0, 10, 20) coatings on Ti6Al4V substrates using laser melting deposition, specifically examining the effects of WC content on the microstructure and properties of the coating. The experimental findings indicate that the introduction of WC particles resulted in the formation of a TiC reinforced phase within the composite coating which promoted the equiaxialization of lamellae alpha phase. The hardness of the coatings increased significantly with the increase of the mass fraction of WC nanoparticles. Notably, the Ti6Al4V10WC and Ti6Al4V-20WC coatings exhibited wear resistance that was 2.5 and 3.4 times greater, respectively, compared to the Ti6Al4V coatings. This enhancement in wear resistance can be attributed to the reinforcing phase (TiC) formed by the addition of WC. This experiment demonstrates a viable approach to improving the wear resistance of the Ti6Al4V titanium alloy through surface treatment.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effect of Y2O3 addition on microstructure and properties of Ti6Al4V by laser melting deposition
    Han, Wei
    Min, Jin
    Dai, Guoqing
    Guo, Yanhua
    Chang, Lili
    Wang, Yaoqi
    Zhao, Ertuan
    Sun, Zhonggang
    Chang, Hui
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 886
  • [2] Effect of laser rescanning on Ti6Al4V microstructure during selective laser melting
    Duan, Weipeng
    Wu, Meiping
    Han, Jitai
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2021, 235 (05) : 763 - 771
  • [3] Effect of laser rescanning on Ti6Al4V microstructure during selective laser melting
    Duan, Weipeng
    Wu, Meiping
    Han, Jitai
    Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235 (05): : 763 - 771
  • [4] THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING
    Fogagnolo, Joao Batista
    Sallica-Leva, Edwin
    Lopes, Eder
    Jardini, Andre Luiz
    Caram, Rubens
    21ST INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2012), 2012, : 1234 - 1238
  • [5] Selective laser melting of Ti6Al4V: Effect of laser re-melting
    Karimi, J.
    Suryanarayana, C.
    Okulov, I.
    Prashanth, K.G.
    Prashanth, K.G. (kgprashanth@gmail.com), 1600, Elsevier Ltd (805):
  • [6] Selective laser melting of Ti6Al4V: Effect of laser re-melting
    Karimi, J.
    Suryanarayana, C.
    Okulov, I
    Prashanth, K. G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 805
  • [7] Effect of laser welding on microstructure and mechanical properties of biomedical Ti6Al4V
    Hayriye Ertek Emre
    Şennur Arslan
    Applied Physics A, 2019, 125
  • [8] Effect of laser welding on microstructure and mechanical properties of biomedical Ti6Al4V
    Emre, Hayriye Ertek
    Arslan, Sennur
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (11):
  • [9] Effect of Heat Treatment on Microstructure and Mechanical Properties of Ti6Al4V Alloy Fabricated by Selective Laser Melting
    Waqas, Muhammad
    He, Dingyong
    Liu, Yude
    Riaz, Saleem
    Afzal, Farkhanda
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (02) : 680 - 694
  • [10] Graded microstructure and properties of TiCp/Ti6Al4V composites manufactured by laser melting deposition
    Wang, Jiandong
    Zeng, Yuzhou
    Qi, Xiaopeng
    Xue, Yu
    Xu, De
    Li, Liqun
    Tong, Yunxiang
    Jiang, Fengchun
    CERAMICS INTERNATIONAL, 2022, 48 (05) : 6985 - 6997