Assessing the Risk Stratification of Breast Cancer Polygenic Risk Scores in a Brazilian Cohort

被引:0
|
作者
Barreiro, Rodrigo A. S. [1 ,6 ]
de Almeida, Tatiana F. [6 ]
Gomes, Catarina [6 ,7 ]
Monfardini, Frederico [6 ]
de Farias, Allysson A. [6 ]
Tunes, Gabriela C. [6 ]
de Souza, Gabriel M. [6 ]
Duim, Etienne [8 ]
de Sa Correia, Jaqueline [6 ]
Coelho, Antonio V. Campos [6 ]
Caraciolo, Marcel P. [6 ]
Duarte, Yeda A. Oliveira [2 ,3 ]
Zatz, Mayana [4 ,5 ]
Amaro, Edson [6 ]
Oliveira, Joao B. [6 ]
Bitarello, Barbara D. [9 ]
Brentani, Helena [6 ,7 ]
Naslavsky, Michel S. [4 ,5 ,6 ]
机构
[1] Univ Sao Paulo, Dept Biochem, Biosci Inst, Sao Paulo, Brazil
[2] Univ Sao Paulo, Biosci Inst, Med Surg Nursing Dept, Sao Paulo, Brazil
[3] Univ Sao Paulo, Sch Nursing, Epidemiol Dept, Biosci Inst, Sao Paulo, Brazil
[4] Univ Sao Paulo, Biosci Inst, Human Genome & Stem Cell Res Ctr, Publ Hlth Sch, Sao Paulo, Brazil
[5] Univ Sao Paulo, Biosci Inst, Dept Genet & Evolutionary Biol, Sao Paulo, Brazil
[6] Hosp Israelita Albert Einstein, Sao Paulo, Brazil
[7] Univ Sao Paulo, Inst Psychiat, Sch Med, Sao Paulo, Brazil
[8] Hosp Israelita Albert Einstein, Big Data & Analyt Dept, Sao Paulo, Brazil
[9] Bryn Mawr Coll, Dept Biol, Bryn Mawr, PA USA
来源
JOURNAL OF MOLECULAR DIAGNOSTICS | 2024年 / 26卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/j.jmoldx.2024.06.002
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Polygenic risk scores (PRSs) for breast cancer have a clear clinical utility in risk prediction. PRS transferability across populations and ancestry groups is hampered by population-specific factors, ultimately leading to differences in variant effects, such as linkage disequilibrium and differences in variant frequency (allele frequency differences). Thus, locally sourced population-based phenotypic and genomic data sets are essential to assess the validity of PRSs derived from signals detected across populations. This study assesses the transferability of a breast cancer PRS composed of 313 risk variants (313-PRS) in a Brazilian trihybrid admixed ancestries (European, African, and Native American) wholegenome sequenced cohort, the Rare Genomes Project. 313-PRS was computed in the Rare Genomes Project (n = 853) using the UK Biobank (UKBB; n = 264,307) as reference. The Brazilian cohorts have a high European ancestry (EA) component, with allele frequency differences and to a lesser extent linkage disequilibrium patterns similar to those found in EA populations. The 313-PRS distribution was found to be inflated when compared with that of the UKBB, leading to potential overestimation of PRSbased risk if EA is taken as a standard. However, case controls lead to equivalent predictive power when compared with UKBB-EA samples with area under the receiver operating characteristic curve values of 0.66 to 0.62 compared with 0.63 for UKBB. (J Mol Diagn 2024, 26: 825-831; https://doi.org/10.1016/ j.jmoldx.2024.06.002)
引用
收藏
页码:825 / 831
页数:7
相关论文
共 50 条
  • [1] Polygenic Risk Scores in Breast Cancer
    Mina, Lida A.
    Arun, Banu
    CURRENT BREAST CANCER REPORTS, 2019, 11 (03) : 117 - 122
  • [2] Polygenic Risk Scores in Breast Cancer
    Lida A. Mina
    Banu Arun
    Current Breast Cancer Reports, 2019, 11 : 117 - 122
  • [3] Polygenic Risk Scores for Breast Cancer
    Demarest, Kaitlin
    Shah, Payal D.
    CURRENT BREAST CANCER REPORTS, 2024, 16 (02) : 269 - 277
  • [4] Polygenic risk scores and breast cancer risk prediction
    Roberts, Eleanor
    Howell, Sacha
    Evans, D. Gareth
    BREAST, 2023, 67 : 71 - 77
  • [5] Polygenic risk scores for hypertension risk stratification
    Borisov, O.
    Salvi, E.
    Citterio, L.
    Lanzani, C.
    Barlassina, C.
    Glorioso, N.
    Krawitz, P.
    Cusi, D.
    Manunta, P.
    Maj, C.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 281 - 281
  • [6] Assessing thyroid cancer risk using polygenic risk scores
    Liyanarachchi, Sandya
    Gudmundsson, Julius
    Ferkingstad, Egil
    He, Huiling
    Jonasson, Jon G.
    Tragante, Vinicius
    Asselbergs, Folkert W.
    Xu, Li
    Kiemeney, Lambertus A.
    Netea-Maier, Romana T.
    Mayordomo, Jose I.
    Plantinga, Theo S.
    Hjartarson, Hannes
    Hrafnkelsson, Jon
    Sturgis, Erich M.
    Brock, Pamela
    Nabhan, Fadi
    Thorleifsson, Gudmar
    Ringel, Matthew D.
    Stefansson, Kari
    de la Chapelle, Albert
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (11) : 5997 - 6002
  • [8] Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes
    Mavaddat, Nasim
    Michailidou, Kyriaki
    Dennis, Joe
    Lush, Michael
    Fachal, Laura
    Lee, Andrew
    Tyrer, Jonathan P.
    Chen, Ting-Huei
    Wang, Qin
    Bolla, Manjeet K.
    Yang, Xin
    Adank, Muriel A.
    Ahearn, Thomas
    Aittomaki, Kristiina
    Allen, Jamie
    Andrulis, Irene L.
    Anton-Culver, Hoda
    Antonenkova, Natalia N.
    Arndt, Volker
    Aronson, Kristan J.
    Auer, Paul L.
    Auvinen, Paivi
    Barrdahl, Myrto
    Freeman, Laura E. Beane
    Beckmann, Matthias W.
    Behrens, Sabine
    Benitez, Javier
    Bermisheva, Marina
    Bernstein, Leslie
    Blomqvist, Carl
    Bogdanova, Natalia, V
    Bojesen, Stig E.
    Bonanni, Bernardo
    Borresen-Dale, Anne-Lise
    Brauch, Hiltrud
    Bremer, Michael
    Brenner, Hermann
    Brentnall, Adam
    Brock, Ian W.
    Brooks-Wilson, Angela
    Brucker, Sara Y.
    Bruening, Thomas
    Burwinkel, Barbara
    Campa, Daniele
    Carter, Brian D.
    Castelao, Jose E.
    Chanock, Stephen J.
    Chlebowski, Rowan
    Christiansen, Hans
    Clarke, Christine L.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2019, 104 (01) : 21 - 34
  • [9] Evaluation of Polygenic Risk Scores for Predicting Breast and Prostate Cancer Risk
    Machiela, Mitchell J.
    Chen, Chia-Yen
    Chen, Constance
    Chanock, Stephen J.
    Hunter, David J.
    Kraft, Peter
    GENETIC EPIDEMIOLOGY, 2011, 35 (06) : 506 - 514
  • [10] Polygenic risk scores for prediction of breast cancer risk in Asian populations
    Ho, Weang-Kee
    Tai, Mei-Chee
    Dennis, Joe
    Shu, Xiang
    Li, Jingmei
    Ho, Peh Joo
    Millwood, Iona Y.
    Lin, Kuang
    Jee, Yon-Ho
    Lee, Su-Hyun
    Mavaddat, Nasim
    Bolla, Manjeet K.
    Wang, Qin
    Michailidou, Kyriaki
    Long, Jirong
    Wijaya, Eldarina Azfar
    Hassan, Tiara
    Rahmat, Kartini
    Tan, Veronique Kiak Mien
    Tan, Benita Kiat Tee
    Tan, Su Ming
    Tan, Ern Yu
    Lim, Swee Ho
    Gao, Yu-Tang
    Zheng, Ying
    Kang, Daehee
    Choi, Ji-Yeob
    Han, Wonshik
    Lee, Han-Byoel
    Kubo, Michiki
    Okada, Yukinori
    Namba, Shinichi
    Park, Sue K.
    Kim, Sung-Won
    Shen, Chen-Yang
    Wu, Pei-Ei
    Park, Boyoung
    Muir, Kenneth R.
    Lophatananon, Artitaya
    Wu, Anna H.
    Tseng, Chiu-Chen
    Matsuo, Keitaro
    Ito, Hidemi
    Kwong, Ava
    Chan, Tsun L.
    John, Esther M.
    Kurian, Allison W.
    Iwasaki, Motoki
    Yamaji, Taiki
    Kweon, Sun-Seog
    GENETICS IN MEDICINE, 2022, 24 (03) : 586 - 600