Extracellular vesicles released by LPS-stimulated spinal organotypic slices spread neuroinflammation into naïve slices through connexin43 hemichannel opening and astrocyte aberrant calcium dynamics

被引:0
|
作者
Memo, Christian [1 ]
Parisse, Pietro [2 ,3 ]
Amoriello, Roberta [1 ,4 ]
Pachetti, Maria [1 ]
Palandri, Anabela [1 ]
Casalis, Loredana [2 ]
Ballerini, Clara [4 ]
Ballerini, Laura [1 ]
机构
[1] Int Sch Adv Studies SISSA ISAS, Neurosci Area, Trieste, Italy
[2] ELETTRA Synchrotron Light Source, Nanoinnovat Lab, Basovizza, Italy
[3] CNR IOM, Basovizza, Italy
[4] Univ Florence, Dipartimento Med Sperimentale & Clin, Florence, Italy
关键词
atomic force microscopy; calcium imaging; GAP27; cytokine and chemokine; neuroglia and inflammation; INFLAMMATION; EXPRESSION; MICROGLIA;
D O I
10.3389/fncel.2024.1433309
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction Neuroinflammation is a hallmark of multiple neurodegenerative diseases, shared by all pathological processes which primarily impact on neurons, including Central Nervous System (CNS) injuries. In reactive CNS, activated glia releases extracellular vesicles (EVs), nanosized membranous particles known to play a key role in intercellular communication. EVs mediate neuroinflammatory responses and might exacerbate tissue deterioration, ultimately influencing neurodegenerative disease progression.Methods We treated spinal cord organotypic slices with LPS, a ligand extensively used to induce sEVs release, to mimic mild inflammatory conditions. We combine atomic force microscopy (AFM), nanoparticle tracking (NTA) and western blot (WB) analysis to validate the isolation and characterisation of sEVs. We further use immunofluorescence and confocal microscopy with live calcium imaging by GCaMP6f reporter to compare glial reactivity to treatments with sEVs when isolated from resting and LPS treated organ slices.Results In our study, we focus on CNS released small EVs (sEVs) and their impact on the biology of inflammatory environment. We address sEVs local signalling within the CNS tissue, in particular their involvement in inflammation spreading mechanism(s). sEVs are harvested from mouse organotypic spinal cord cultures, an in vitro model which features 3D complexity and retains spinal cord resident cells. By confocal microscopy and live calcium imaging we monitor glial responses in na & iuml;ve spinal slices when exposed to sEVs isolated from resting and LPS treated organ slices.Discussion We show that sEVs, only when released during LPS neuroinflammation, recruit na & iuml;ve astrocytes in the neuroinflammation cycle and we propose that such recruitment be mediated by EVs hemichannel (HC) permeability.
引用
收藏
页数:13
相关论文
empty
未找到相关数据