Remote fossil prospecting in the Cradle of Humankind: Assessing variable importance for cave site prediction using Random Forest models

被引:0
|
作者
Furtner, Margaret J. [1 ]
Anemone, Robert L. [2 ]
Wang, Lei [1 ]
Caruana, Matthew V. [3 ]
Lombard, Marlize [3 ]
Brophy, Juliet K. [1 ,4 ]
机构
[1] Louisiana State Univ, Dept Geog & Anthropol, Baton Rouge, LA USA
[2] Univ North Carolina Greensboro, Dept Anthropol, Greensboro, NC USA
[3] Univ Johannesburg, Paleo Res Inst, Johannesburg, South Africa
[4] Univ Witwatersrand, Ctr Explorat Deep Human Journey, Johannesburg, South Africa
关键词
D O I
暂无
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
引用
收藏
页码:55 / 55
页数:1
相关论文
共 3 条
  • [1] Assessing agreement between permutation and dropout variable importance methods for regression and random forest models
    Bladen, Kelvyn
    Cutler, Richard
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (07): : 4495 - 4514
  • [2] Investigating macro-level hotzone identification and variable importance using big data: A random forest models approach
    Jiang, Ximiao
    Abdel-Aty, Mohamed
    Hu, Jia
    Lee, Jaeyoung
    NEUROCOMPUTING, 2016, 181 : 53 - 63
  • [3] Predictive Modeling of Korean Traditional Paper Characteristics Using Machine Learning Approaches (Part 2): Prediction of Carbonyl Content and Analysis of Variable Importance Using Random Forest
    Kim K.-J.
    Kim J.-H.
    Park G.
    Jeong M.-J.
    Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2023, 55 (05): : 13 - 23