Effect of Vibration Mixing on the Mechanical Properties of Carbon Nanotube-Reinforced Ultra-High-Performance Concrete

被引:2
|
作者
Zhou, Li [1 ]
Yin, Jiangang [2 ]
Wang, Wei [1 ]
Liu, Fucai [3 ]
Xiao, Min [3 ]
Yang, Yibo [4 ,5 ]
Cui, Haibo [3 ]
机构
[1] State Grid Hubei Econ Res Inst, Wuhan 430077, Peoples R China
[2] State Grid Hubei Elect Power Co Ltd, Wuhan 430048, Peoples R China
[3] Guangdong Gaiteqi New Mat Technol Co Ltd, Qingyuan 511600, Peoples R China
[4] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
[5] South China Univ Technol, State Key Lab Subtrop Bldg & Urban Sci, Guangzhou 510640, Peoples R China
关键词
vibration mixing; ultra-high-performance concrete; carbon nanotubes; mechanical properties;
D O I
10.3390/buildings14082545
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vibration mixing, characterized by the high-frequency vibrations of the mixing shaft, can enhance the mechanical properties of ultra-high-performance concrete (UHPC). However, the effects of vibration mixing on carbon nanotube (CNT)-reinforced UHPC have not been previously reported. To investigate the impact of vibration mixing on the properties of CNT-reinforced UHPC, a comparative study was conducted using different vibration mixing durations and twin-shaft mixing. The results indicate that for CNT-reinforced UHPC, vibration mixing achieves better flowability, higher wet apparent density, and superior mechanical properties in shorter mixing times compared to twin-shaft mixing, making it a more favorable method. Considering vibration mixing times ranging from 3 to 7 min, the optimal time was found to be 3 min, during which the axial compressive strength increased by 3.3%, the elastic limit tensile strength and tensile strength improved by 14.6% and 15.8%, respectively, and the initial cracking strength and flexural strength increased by 12.6% and 13.4%, respectively, compared to values after 10 min of twin-shaft mixing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An Investigation of Mechanical Properties of Recycled Carbon Fiber Reinforced Ultra-High-Performance Concrete
    Patchen, Andrew
    Young, Stephen
    Penumadu, Dayakar
    MATERIALS, 2023, 16 (01)
  • [2] Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    CEMENT & CONCRETE COMPOSITES, 2016, 73 : 267 - 280
  • [3] Mechanical properties of recycled steel fiber reinforced ultra-high-performance concrete
    Yang J.
    Peng G.
    Shui G.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2019, 36 (08): : 1949 - 1956
  • [4] Mechanical Properties and Durability of Ultra-High-Performance Concrete
    Magureanu, Cornelia
    Sosa, Ioan
    Negrutiu, Camelia
    Heghes, Bogdan
    ACI MATERIALS JOURNAL, 2012, 109 (02) : 177 - 183
  • [5] Mechanical properties of ultra-high-performance fiber-reinforced concrete at cryogenic temperatures
    Kim, Min-Jae
    Kim, Soonho
    Lee, Seul-Kee
    Kim, Jun-Hwi
    Lee, Kangwon
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 157 : 498 - 508
  • [6] Effect of recycled molybdenum tailings on mechanical properties of ultra-high-performance concrete
    Li, Xin
    Liu, Cun-Xiang
    Zhao, Xin-Yu
    Kang, Shao-Bo
    FRONTIERS IN MATERIALS, 2024, 11
  • [7] The Effect of Carbon Nanotube Hydrophobicity on the Mechanical Properties of Carbon Nanotube-Reinforced Thermoplastic Polyurethane Nanocomposites
    Smart, Simon
    Fania, David
    Milev, Adriyan
    Kannangara, G. S. Kamali
    Lu, Max
    Martin, Darren
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 117 (01) : 24 - 32
  • [8] Effect of a Novel Vibration Mixing on the Fiber Distribution and Mechanical Properties of Ultra-High Performance Concrete
    Zheng, Yangzezhi
    Zhou, Yang
    Nie, Fan
    Luo, Haoyuan
    Huang, Xiaoming
    SUSTAINABILITY, 2022, 14 (13)
  • [9] Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers
    Meng, Weina
    Khayat, Kamal H.
    COMPOSITES PART B-ENGINEERING, 2016, 107 : 113 - 122
  • [10] Mechanical and fracture mechanics properties of ultra-high-performance concrete
    Raheem, Ahmed H. Abdel
    Mahdy, M.
    Mashaly, Asmaa A.
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 213 : 561 - 566