LSTM-GRU Based Efficient Intrusion Detection in 6G-Enabled Metaverse Environments

被引:0
|
作者
Gupta, Brij B. [1 ]
Gaurav, Akshat [2 ]
Arya, Varsha [3 ]
Chui, Kwok Tai [4 ]
机构
[1] Asia Univ, Dept Comp Sci & Informat Engn, Taichung 413, Taiwan
[2] Ronin Inst, Montclair, NJ USA
[3] Asia Univ, Taichung, Taiwan
[4] Hong Kong Metropolitan Univ HKMU, Hong Kong, Peoples R China
关键词
Intrusion Detection Systems; LSTM-GRU Neural Networks; Metaverse Cybersecurity; 6G Network Technology; Sequential Data Processing;
D O I
10.1109/WoWMoM60985.2024.00032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In response to the growing security demands of the 6G-enabled Metaverse, this paper introduces an efficient intrusion detection system utilizing a novel LSTM-GRU-based neural network. The model capitalizes on the sequential data processing prowess of LSTM and GRU layers to discern complex patterns indicative of cyber threats. Evaluated on a diverse dataset, the model architecture demonstrated significant accuracy improvements over traditional machine learning methods, achieving a 0.90 overall accuracy with high precision across various attack classes. Our results, presented through loss and accuracy trends, confusion matrices, and classification reports, attest to the model's robustness and generalizability. This study proposes a promising approach to safeguarding the Metaverse-6G convergence, marking a step forward in predictive cybersecurity measures.
引用
收藏
页码:118 / 123
页数:6
相关论文
共 50 条
  • [1] A Novel Efficient Dynamic Throttling Strategy for Blockchain-Based Intrusion Detection Systems in 6G-Enabled VSNs
    Alevizos, Lampis
    Ta, Vinh Thong
    Eiza, Max Hashem
    [J]. SENSORS, 2023, 23 (18)
  • [2] Expert Perspectives on Future 6G-Enabled Hospital Metaverse
    Wang, Fan
    Jurva, Risto
    Ahokangas, Petri
    Yrjola, Seppo
    Matinmikko-Blue, Marja
    [J]. DIGITAL HEALTH AND WIRELESS SOLUTIONS, PT I, NCDHWS 2024, 2024, 2083 : 3 - 20
  • [3] Anomaly Detection in Metaverse Healthcare and Fitness: Bigdata Analytics Using 6G-Enabled Internets of Things
    Zhu, Kai-Tuo
    Wu, Yue
    Yang, Ren
    Yuan, Qiong
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2024,
  • [4] 6G-Enabled Edge AI for Metaverse: Challenges, Methods, and Future Research Directions
    Chang L.
    Zhang Z.
    Li P.
    Xi S.
    Guo W.
    Shen Y.
    Xiong Z.
    Kang J.
    Niyato D.
    Qiao X.
    Wu Y.
    [J]. Journal of Communications and Information Networks, 2022, 7 (02)
  • [5] A GAN-Based Intrusion Detection Model for 5G Enabled Future Metaverse
    Shanshuo Ding
    Liang Kou
    Ting Wu
    [J]. Mobile Networks and Applications, 2022, 27 : 2596 - 2610
  • [6] A GAN-Based Intrusion Detection Model for 5G Enabled Future Metaverse
    Ding, Shanshuo
    Kou, Liang
    Wu, Ting
    [J]. MOBILE NETWORKS & APPLICATIONS, 2022, 27 (06): : 2596 - 2610
  • [7] Secure and Efficient Message Authentication Scheme for 6G-Enabled VANETs
    Liao, Longxia
    Zhao, Junhui
    Hu, Huanhuan
    Sun, Xiaoke
    [J]. ELECTRONICS, 2022, 11 (15)
  • [8] Cooperative and smart attacks detection systems in 6G-enabled Internet of Things
    Sedjelmacil, Hichem
    Kheir, Nizar
    Boudguiga, Aymen
    Kaaniche, Nesrine
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5238 - 5243
  • [9] DeepLG SecNet: utilizing deep LSTM and GRU with secure network for enhanced intrusion detection in IoT environments
    Nanjappan, Manikandan
    Pradeep, K.
    Natesan, Gobalakrishnan
    Samydurai, A.
    Premalatha, G.
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 5459 - 5471
  • [10] Secure Attack Detection Framework for Hierarchical 6G-Enabled Internet of Vehicles
    Sedjelmaci, Hichem
    Kaaniche, Nesrine
    Boudguiga, Aymen
    Ansari, Nirwan
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (02) : 2633 - 2642