Efficient computation of highly oscillatory finite-part integrals

被引:0
|
作者
Xu, Zhenhua [1 ]
Liu, Guidong [2 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
[2] Nanjing Audit Univ, Sch Math, Nanjing 211815, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite-part integrals; Highly oscillatory integrals; Complex integration method; CAUCHY PRINCIPAL VALUE; QUADRATURE-RULES; NUMERICAL QUADRATURE; GAUSSIAN QUADRATURE; FAST ALGORITHM; EXPANSIONS; NODES;
D O I
10.1016/j.jmaa.2024.128668
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study is devoted to the numerical evaluation of finite-part integrals given by (sic)(0)(+infinity)x(alpha) f(x)/(x-tau)Sm+1(omega x)dx, tau > 0, alpha > -1, m is an element of N, where S(omega x) represents highly oscillatory functions of the form S(omega x)=H-nu((1))(omega x) and S(omega x)=e(i omega x) with omega >> 1. Through singularity separation, we introduce a uniform approximation scheme utilizing the complex integration method. The study includes an analysis of error estimates and convergence rates, demonstrating the superior effectiveness of the proposed algorithm for handling oscillatory integrands. Plentiful numerical results highlight the stability and efficiency of the developed schemes. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On computation of finite-part integrals of highly oscillatory functions
    Chen, Ruyun
    Li, Yu
    Zhou, Yongxiong
    Journal of Computational and Applied Mathematics, 2025, 460
  • [2] Efficient numerical methods for hypersingular finite-part integrals with highly oscillatory integrands
    Xu, Zhenhua
    Lv, Zhanmei
    Liu, Guidong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 433
  • [3] Martensen splines and finite-part integrals
    Demichelis, Vittoria
    Sciarra, Matteo
    NUMERICAL ALGORITHMS, 2015, 69 (04) : 693 - 712
  • [4] Efficient computation of highly oscillatory integrals with Hankel kernel
    Xu, Zhenhua
    Milovanovic, Gradimir V.
    Xiang, Shuhuang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 312 - 322
  • [5] A QUADRATURE RULE FOR FINITE-PART INTEGRALS
    PAGET, DF
    BIT, 1981, 21 (02): : 212 - 220
  • [6] Finite-part integrals and modified splines
    Demichelis, V
    Rabinowitz, P
    BIT NUMERICAL MATHEMATICS, 2004, 44 (02) : 259 - 267
  • [7] Finite-Part Integrals and Modified Splines
    V. Demichelis
    P. Rabinowitz
    BIT Numerical Mathematics, 2004, 44 : 259 - 267
  • [8] Martensen splines and finite-part integrals
    Vittoria Demichelis
    Matteo Sciarra
    Numerical Algorithms, 2015, 69 : 693 - 712
  • [9] A numerical method for finite-part integrals
    Diogo, Teresa
    Lima, Pedro
    Occorsio, Donatella
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2020, 13
  • [10] Definitions, properties and applications of finite-part integrals
    Monegato, G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (02) : 425 - 439