Thermodynamic sensing of quantum nonlinear noise correlations

被引:0
|
作者
Meher, Nilakantha [1 ,2 ,3 ]
Opatrny, Tomas [4 ]
Kurizki, Gershon [1 ,2 ]
机构
[1] Weizmann Inst Sci, AMOS, IL-7610001 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Chem & Biol Phys, IL-7610001 Rehovot, Israel
[3] SRM Univ AP, Dept Phys, Amaravati 522240, Andhra Pradesh, India
[4] Palacky Univ, Fac Sci, Dept Opt, 17 listopadu 50, Olomouc 77146, Czech Republic
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2024年 / 9卷 / 04期
关键词
nonlinear interferometer; process tomography; ergotropy; WORK; OSCILLATOR; EXTRACTION; RADIATION; PHOTONS; STATES; LASER;
D O I
10.1088/2058-9565/ad6eb4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We put forth the concept of quantum noise sensing in nonlinear two-mode interferometers coupled to mechanical oscillators. These autonomous machines are capable of sensing quantum nonlinear correlations of two-mode noisy fields via their thermodynamic variable of extractable work, alias work capacity (WC) or ergotropy. The fields are formed by thermal noise input via its interaction with multi-level systems inside the interferometer. Such interactions amount to the generation of two-mode quantum nonlinear gauge fields that may be partly unknown. We show that by monitoring a mechanical oscillator coupled to the interferometer, one can sense the WC of one of the output field modes and thereby reveal the quantum nonlinear correlations of the field. The proposed quantum sensing method can provide an alternative to quantum multiport interferometry where the output field is unraveled by tomography. This method may advance the simulation and control of multimode quantum nonlinear gauge fields.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Sub-shot-noise shadow sensing with quantum correlations
    Toninelli, Ermes
    Edgar, Matthew P.
    Moreau, Paul-Antoine
    Gibson, Graham M.
    Hammond, Giles D.
    Padgett, Miles J.
    OPTICS EXPRESS, 2017, 25 (18): : 21826 - 21840
  • [2] Advanced quantum noise correlations
    Vogl, Ulrich
    Glasser, Ryan T.
    Clark, Jeremy B.
    Glorieux, Quentin
    Li, Tian
    Corzo, Neil V.
    Lett, Paul D.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [3] Quantum Noise Radar: Assessing Quantum Correlations
    Mogilevtsev, D.
    Peshko, I
    Karuseichyk, I
    Mikhalychev, A.
    PNizovtsev, A.
    Slepyan, G. Ya
    Boag, A.
    2019 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, ANTENNAS, COMMUNICATIONS AND ELECTRONIC SYSTEMS (COMCAS), 2019,
  • [4] Property of Quantum Correlations with Correlated Noise
    贺志
    邹健
    李建
    邵彬
    Communications in Theoretical Physics, 2010, 53 (05) : 837 - 842
  • [6] Property of Quantum Correlations with Correlated Noise
    He Zhi
    Zou Jian
    Li Jian
    Shao Bin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (05) : 837 - 842
  • [7] A thermodynamic noise model for nonlinear resistors
    Weiss, L
    Mathis, W
    IEEE ELECTRON DEVICE LETTERS, 1999, 20 (08) : 402 - 404
  • [8] Plasmonic Sensing with Quantum Noise
    Lawrie, Ben
    Fan, Wenjiang
    Pooser, Raphael
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [9] Quantum Noise Sensing by Generating Fake Noise
    Braccia, Paolo
    Banchi, Leonardo
    Caruso, Filippo
    PHYSICAL REVIEW APPLIED, 2022, 17 (02)
  • [10] Energy Dissipation and Noise Correlations in Biochemical Sensing
    Govern, Christopher C.
    ten Wolde, Pieter Rein
    PHYSICAL REVIEW LETTERS, 2014, 113 (25)