Local connectivity of boundaries of tame Fatou components of meromorphic functions

被引:0
|
作者
Baranski, Krzysztof [1 ]
Fagella, Nuria [2 ,3 ]
Jarque, Xavier [2 ,3 ]
Karpinska, Boguslawa [4 ]
机构
[1] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Inst Matemat Univ Barcelona IMUB, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Catalonia, Spain
[3] Barcelona Grad Sch Math BGSMath, Gran Via 585, Barcelona 08007, Catalonia, Spain
[4] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
关键词
Primary; 37F10; 37F20; 30D05; 30D30; JULIA SET; ITERATION;
D O I
10.1007/s00208-024-02957-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the local connectivity of the boundaries of invariant simply connected attracting basins for a class of transcendental meromorphic maps. The maps within this class need not be geometrically finite or in class B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}, and the boundaries of the basins (possibly unbounded) are allowed to contain an infinite number of post-singular values, as well as the essential singularity at infinity. A basic assumption is that the unbounded parts of the basins are contained in regions which we call 'repelling petals at infinity', where the map exhibits a kind of 'parabolic' behaviour. In particular, our results apply to a wide class of Newton's methods for transcendental entire maps. As an application, we prove the local connectivity of the Julia set of Newton's method for sinz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sin z$$\end{document}, providing the first non-trivial example of a locally connected Julia set of a transcendental map outside class B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document}, with an infinite number of unbounded Fatou components.
引用
收藏
页码:1779 / 1843
页数:65
相关论文
共 50 条