Semantic-Oriented Visual Prompt Learning for Diabetic Retinopathy Grading on Fundus Images

被引:0
|
作者
Zhang, Yuhan [1 ]
Ma, Xiao [2 ]
Huang, Kun [2 ]
Li, Mingchao [2 ]
Heng, Pheng-Ann [3 ,4 ]
机构
[1] Chinese Univ Hong Kong, Shenzhen Res Inst, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Nanjing Univ Sci & Technol, Dept Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Inst Med Intelligence & XR, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Visualization; Task analysis; Semantics; Biomedical imaging; Lesions; Tuning; Training; Diabetic retinopathy; prompt learning; pre-trained model; vision transformer; fundus images; CLASSIFICATION; DIAGNOSIS;
D O I
10.1109/TMI.2024.3383827
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diabetic retinopathy (DR) is a serious ocular condition that requires effective monitoring and treatment by ophthalmologists. However, constructing a reliable DR grading model remains a challenging and costly task, heavily reliant on high-quality training sets and adequate hardware resources. In this paper, we investigate the knowledge transferability of large-scale pre-trained models (LPMs) to fundus images based on prompt learning to construct a DR grading model efficiently. Unlike full-tuning which fine-tunes all parameters of LPMs, prompt learning only involves a minimal number of additional learnable parameters while achieving a competitive effect as full-tuning. Inspired by visual prompt tuning, we propose Semantic-oriented Visual Prompt Learning (SVPL) to enhance the semantic perception ability for better extracting task-specific knowledge from LPMs, without any additional annotations. Specifically, SVPL assigns a group of learnable prompts for each DR level to fit the complex pathological manifestations and then aligns each prompt group to task-specific semantic space via a contrastive group alignment (CGA) module. We also propose a plug-and-play adapter module, Hierarchical Semantic Delivery (HSD), which allows the semantic transition of prompt groups from shallow to deep layers to facilitate efficient knowledge mining and model convergence. Our extensive experiments on three public DR grading datasets demonstrate that SVPL achieves superior results compared to other transfer tuning and DR grading methods. Further analysis suggests that the generalized knowledge from LPMs is advantageous for constructing the DR grading model on fundus images.
引用
收藏
页码:2960 / 2969
页数:10
相关论文
共 50 条
  • [1] DRFL: Federated Learning in Diabetic Retinopathy Grading Using Fundus Images
    Mohan, N. Jagan
    Murugan, R.
    Goel, Tripti
    Roy, Parthapratim
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (06) : 1789 - 1801
  • [2] Deep Multi-Task Learning for Diabetic Retinopathy Grading in Fundus Images
    Wang, Xiaofei
    Xu, Mai
    Zhang, Jicong
    Jiang, Lai
    Li, Liu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2826 - 2834
  • [3] Automated Grading of Diabetic Retinopathy in Retinal Fundus Images using Deep Learning
    Hathwar, Sagar B.
    Srinivasa, Gowri
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2019), 2019, : 73 - 77
  • [4] Leveraging Retinal Fundus Images with Deep Learning for Diabetic Retinopathy Grading and Classification
    Yamin M.
    Basahel S.
    Bajaba S.
    Abusurrah M.
    Laxmi Lydia E.
    Computer Systems Science and Engineering, 2023, 46 (02): : 1901 - 1916
  • [5] Lesion-Based Contrastive Learning for Diabetic Retinopathy Grading from Fundus Images
    Huang, Yijin
    Lin, Li
    Cheng, Pujin
    Lyu, Junyan
    Tang, Xiaoying
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 113 - 123
  • [6] Deep learning for automatic diabetic retinopathy grading of ultra-widefield fundus images
    Sarhan, Mhd Hasan
    Sha, Patricia
    Chen, Mike
    Durbin, Mary K.
    Yigitsoy, Mehmet
    Eslami, Abouzar
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [7] Analysis of retinal fundus images for grading of diabetic retinopathy severity
    Fadzil, M. H. Ahmad
    Izhar, Lila Iznita
    Nugroho, Hermawan
    Nugroho, Hanung Adi
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2011, 49 (06) : 693 - 700
  • [8] Analysis of retinal fundus images for grading of diabetic retinopathy severity
    M. H. Ahmad Fadzil
    Lila Iznita Izhar
    Hermawan Nugroho
    Hanung Adi Nugroho
    Medical & Biological Engineering & Computing, 2011, 49 : 693 - 700
  • [9] Deep Learning for Diabetic Retinopathy in Fundus Images
    Rahimi, Keyvan
    Rituraj, Rituraj
    Ecker, Diana
    2022 IEEE 22ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 8TH IEEE INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCE AND ROBOTICS (CINTI-MACRO), 2022, : 351 - 358
  • [10] Detection of lesions and severity grading for diabetic retinopathy in normalized fundus images
    Rouwen, K. W.
    Adal, K. M.
    Peto, T.
    van Etten, P. G.
    Martinez, J. P.
    van Vliet, L. J.
    Vermeer, K. A.
    ACTA OPHTHALMOLOGICA, 2017, 95 : 20 - 20