List packing number of bounded degree graphs

被引:0
|
作者
Cambie, Stijn [1 ,2 ]
van Batenburg, Wouter Cames [3 ]
Davies, Ewan [4 ]
Kang, Ross J. [5 ]
机构
[1] Inst Basic Sci IBS, Extremal Combinator & Probabil Grp ECOPRO, Daejeon, South Korea
[2] Katholieke Univ Leuven, Dept Comp Sci, Campus Kulak Kortrijk, B-8500 Kortrijk, Belgium
[3] Delft Univ Technol, Delft Inst Appl Math, Delft, Netherlands
[4] Colorado State Univ, Dept Comp Sci, Ft Collins, CO USA
[5] Univ Amsterdam, Korteweg de Vries Inst Math, Amsterdam, Netherlands
关键词
Packing of list colourings; list packing number; list colouring; correspondence colouring; maximum degree; transversals;
D O I
10.1017/S0963548324000191
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the list packing number of a graph, the least $k$ such that there are always $k$ disjoint proper list-colourings whenever we have lists all of size $k$ associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree $\Delta$ has list packing number at most $\Delta +1$ . Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks'-type theorem for the list packing number.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Packing triangles in bounded degree graphs
    Caprara, A
    Rizzi, R
    [J]. INFORMATION PROCESSING LETTERS, 2002, 84 (04) : 175 - 180
  • [2] Packing Krs in bounded degree graphs
    Mckay, Michael
    Manlove, David
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 352 : 20 - 32
  • [3] Equitable List Coloring of Graphs with Bounded Degree
    Kierstead, H. A.
    Kostochka, A. V.
    [J]. JOURNAL OF GRAPH THEORY, 2013, 74 (03) : 309 - 334
  • [4] On the Number of Connected Sets in Bounded Degree Graphs
    Kangas, Kustaa
    Kaski, Petteri
    Koivisto, Mikko
    Korhonen, Janne H.
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2014, 8747 : 336 - 347
  • [5] The harmonious chromatic number of bounded degree graphs
    Edwards, K
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 : 435 - 447
  • [6] On the number of connected sets in bounded degree graphs
    Kangas, Kustaa
    Kaski, Petteri
    Korhonen, Janne H.
    Koivisto, Mikko
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [7] On the Number of Hamilton Cycles in Bounded Degree Graphs
    Gebauer, Heidi
    [J]. PROCEEDINGS OF THE TENTH WORKSHOP ON ALGORITHM ENGINEERING AND EXPERIMENTS AND THE FIFTH WORKSHOP ON ANALYTIC ALGORITHMICS AND COMBINATORICS, 2008, : 241 - 248
  • [8] Total interval number for graphs with bounded degree
    Kostochka, AV
    West, DB
    [J]. JOURNAL OF GRAPH THEORY, 1997, 25 (01) : 79 - 84
  • [9] Planar Graphs of Bounded Degree Have Bounded Queue Number
    Bekos, Michael
    Foerster, Henry
    Gronemann, Martin
    Mchedlidze, Tamara
    Montecchiani, Fabrizio
    Raftopoulou, Chrysanthi
    Ueckerdt, Torsten
    [J]. PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 176 - 184
  • [10] PLANAR GRAPHS OF BOUNDED DEGREE HAVE BOUNDED QUEUE NUMBER
    Bekos, Michael A.
    Foerster, Henry
    Gronemann, Martin
    Mchedlidze, Tamara
    Montecchiani, Fabrizio
    Raftopoulou, Chrysanthi
    Ueckerdt, Torsten
    [J]. SIAM JOURNAL ON COMPUTING, 2019, 48 (05) : 1487 - 1502