Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques

被引:0
|
作者
Akter, Tanzina [1 ]
Hossain, Md. Farhad [1 ]
Ullah, Mohammad Safi [2 ]
Akter, Rabeya [3 ]
机构
[1] Comilla Univ, Dept Stat, Cumilla 3506, Bangladesh
[2] Comilla Univ, Dept Math, Cumilla 3506, Bangladesh
[3] Jagannath Univ, Dept Math, Dhaka 1100, Bangladesh
关键词
D O I
10.1155/2024/5891177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Predicting mortality in COVID-19 is one of the most significant and difficult tasks at hand. This study compares time series and machine learning methods, including support vector machines (SVMs) and neural networks (NNs), to forecast the mortality rate in seven countries: the United States, India, Brazil, Russia, France, China, and Bangladesh. Data were gathered between December 31, 2019, when COVID-19 began, and March 31, 2021. The study used 457 observations with 4 variables: daily confirmed cases, daily deaths, daily mortality rate, and date. To predict the death rate in the seven countries that were chosen, the data were analyzed using time series analysis and machine learning techniques. Models were compared to obtain more accurate mortality predictions. The autoregressive integrated moving average (ARIMA) model with the lowest AIC value for each nation is found through time series analysis. By increasing the hidden layer and applying machine learning techniques, the NN model for each country is chosen, and the optimal model is determined by determining the model with the lowest error value. Additionally, SVM analyzes every country and calculates its R2 and root-mean-square error (RMSE). The lowest RMSE value is used to compare all of the time series and machine learning models. According to the comparison table, SVM provides a more accurate model to predict the mortality rate of the seven countries, with the lowest RMSE value. During the study period, mortality rates increased in Brazil and Russia and decreased in the United States, India, France, China, and Bangladesh, according to the comparison value of RMSE in this study. Furthermore, this paper shows that SVM outperforms all other models in terms of performance. According to the author's analysis of the data, SVM is a machine learning technique that can be used to accurately predict mortality in a pandemic scenario.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [1] COVID-19 Mortality Prediction Using Machine Learning Techniques
    Schirato, Lindsay
    Makina, Kennedy
    Flanders, Dwayne
    Pouriyeh, Seyedamin
    Shahriar, Hossain
    2021 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (ICDH 2021), 2021, : 197 - 202
  • [2] Modelling of COVID-19 spread time and mortality rate using machine learning techniques
    Arrabi A.
    Al-Mousa A.
    International Journal of Intelligent Information and Database Systems, 2023, 16 (02) : 143 - 166
  • [3] Covid-19 Mortality Risk Prediction Model Using Machine Learning
    Sanchez-Galvez, Alba Maribel
    Sanchez-Galvez, Sully
    Alvarez-Gonzalez, Ricardo
    Rojas-Alarcon, Frida
    COMPUTACION Y SISTEMAS, 2023, 27 (04): : 881 - 888
  • [4] Automatic COVID-19 prediction using explainable machine learning techniques
    Solayman S.
    Aumi S.A.
    Mery C.S.
    Mubassir M.
    Khan R.
    International Journal of Cognitive Computing in Engineering, 2023, 4 : 36 - 46
  • [5] Application of machine learning time series analysis for prediction COVID-19 pandemic
    Chaurasia V.
    Pal S.
    Research on Biomedical Engineering, 2022, 38 (01) : 35 - 47
  • [6] Prediction of COVID-19 Mortality in the Intensive Care Unit Using Machine Learning
    Sakagianni, Aikaterini
    Koufopoulou, Christina
    Verykios, Vassilios
    Loupelis, Evangelos
    Kalles, Dimitrios
    Feretzakis, Georgios
    CARING IS SHARING-EXPLOITING THE VALUE IN DATA FOR HEALTH AND INNOVATION-PROCEEDINGS OF MIE 2023, 2023, 302 : 536 - 540
  • [7] Symptom Prediction and Mortality Risk Calculation for COVID-19 Using Machine Learning
    Jamshidi, Elham
    Rahi, Sahand
    Mansouri, Nahal
    EUROPEAN RESPIRATORY JOURNAL, 2021, 58
  • [8] Symptom Prediction and Mortality Risk Calculation for COVID-19 Using Machine Learning
    Jamshidi, Elham
    Asgary, Amirhossein
    Tavakoli, Nader
    Zali, Alireza
    Dastan, Farzaneh
    Daaee, Amir
    Badakhshan, Mohammadtaghi
    Esmaily, Hadi
    Jamaldini, Seyed Hamid
    Safari, Saeid
    Bastanhagh, Ehsan
    Maher, Ali
    Babajani, Amirhesam
    Mehrazi, Maryam
    Kashi, Mohammad Ali Sendani
    Jamshidi, Masoud
    Sendani, Mohammad Hassan
    Rahi, Sahand Jamal
    Mansouri, Nahal
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [9] Prediction and forecasting of worldwide corona virus (COVID-19) outbreak using time series and machine learning
    Jain, Priyank
    Sahu, Shriya
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (26):
  • [10] Prediction of Covid-19 and post Covid-19 patients with reduced feature extraction using Machine Learning Techniques
    Bano, Shehr
    Hussain, Syed Fawad
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 37 - 42