Camera-IMU State Estimation and External Parameter Online Calibration Algorithm

被引:0
|
作者
Mao Zinian [1 ]
Zhou Zhifeng [1 ]
Shen Yichun [2 ]
Wang Liduan [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Shanghai 201620, Peoples R China
[2] Shanghai Satellite Engn Res Inst, Shanghai 200240, Peoples R China
[3] Shanghai Si Nan Satellite Nav Technol Co Ltd, Shanghai 201801, Peoples R China
关键词
camera and inertial measurement unit; external parameter calibration; initialization; inertial measurement unit pre-integration; NAVIGATION; INITIALIZATION; MOTION; ROBUST;
D O I
10.3788/LOP231200
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we aim to solve the recalibration of the external parameters owing to the changing relative positions of the camera and inertial measurement unit (IMU) in real-time dynamic imaging equipment. Thus, we propose a highly robust Camera-IMU external parameter online calibration method, which automatically estimates the initial value and external parameters when the mechanical configuration is unknown. The global satellite navigation time is used to align the timestamps of the IMU and camera. Then, the singular value decomposition method is used to solve the overdetermined linear equation of rotation. The threshold determination condition and weighting method are modified to reduce degenerate motion in the equation and eliminate the external points, improve system robustness and external parameter accuracy, and obtain constant Camera-IMU rotation external parameters. Then, based on the obtained Camera-IMU rotation external parameters, the sliding window is fixed and the Gaussian-Newton method is used to estimate the Camera-IMU external parameter translation. Compared with the original online calibration method, the calibration accuracy of the rotating external parameter is increased by 15% and the accuracy of the translation external parameters is improved by 35%. Experimental results show the effectiveness of the proposed method.
引用
收藏
页数:9
相关论文
共 24 条
  • [1] Baheri A, 2020, P AMER CONTR CONF, P2520, DOI [10.23919/acc45564.2020.9147510, 10.23919/ACC45564.2020.9147510]
  • [2] [曹力科 Cao Like], 2021, [机器人, Robot], V43, P193
  • [3] Dong-Si TC, 2012, IEEE INT C INT ROBOT, P1064, DOI 10.1109/IROS.2012.6386235
  • [4] On-Manifold Preintegration for Real-Time Visual-Inertial Odometry
    Forster, Christian
    Carlone, Luca
    Dellaert, Frank
    Scaramuzza, Davide
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (01) : 1 - 21
  • [5] In defense of the eight-point algorithm
    Hartley, RI
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (06) : 580 - 593
  • [6] Huang WB, 2018, IEEE INT CONF ROBOT, P5182
  • [7] Huang X Z, 2022, Radio Communications Technology, V48, P342
  • [8] High-precision, consistent EKF-based visual-inertial odometry
    Li, Mingyang
    Mourikis, Anastasios I.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (06): : 690 - 711
  • [9] Lin W W, 2021, Automotive Engineer, P13
  • [10] Autonomous aerial navigation using monocular visual-inertial fusion
    Lin, Yi
    Gao, Fei
    Qin, Tong
    Gao, Wenliang
    Liu, Tianbo
    Wu, William
    Yang, Zhenfei
    Shen, Shaojie
    [J]. JOURNAL OF FIELD ROBOTICS, 2018, 35 (01) : 23 - 51