UNIFORMCONVERGENCE OF INTERLACED EULER METHOD FOR STIFF STOCHASTIC DIFFERENTIAL EQUATIONS

被引:2
|
作者
Cipcigan, Ioana [1 ]
Rathinam, Muruhan [1 ]
机构
[1] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA
来源
MULTISCALE MODELING & SIMULATION | 2011年 / 9卷 / 03期
关键词
stochastic differential equations; stiffness; uniform convergence; implicit methods; Euler methods; absolute stability; STABILITY;
D O I
10.1137/080743305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In contrast to stiff deterministic systems of ordinary differential equations, in general, the implicit Euler method for stiff stochastic differential equations is not effective. This paper introduces a new numerical method for stiff differential equations which consists of interlacing large implicit Euler time steps with a sequence of small explicit Euler time steps. We emphasize that uniform convergence with respect to the time scale separation parameter e is a desirable property of a stiff solver. We prove that the means and variances of this interlaced method converge uniformly in e for a suitably chosen test problem. We also illustrate the effectiveness of this method via some numerical examples.
引用
收藏
页码:1217 / 1252
页数:36
相关论文
共 50 条
  • [1] The composite Euler method for stiff stochastic differential equations
    Burrage, K
    Tian, TH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 407 - 426
  • [2] An error corrected Euler-Maruyama method for stiff stochastic differential equations
    Yin, Zhengwei
    Gan, Siqing
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 630 - 641
  • [3] Exponential Euler method for stiff stochastic differential equations with additive fractional Brownian noise
    Kamrani, Minoo
    Debrabant, Kristian
    Jamshidi, Nahid
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (03) : 357 - 371
  • [4] An improved Milstein method for stiff stochastic differential equations
    Yin, Zhengwei
    Gan, Siqing
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 16
  • [5] An improved Milstein method for stiff stochastic differential equations
    Zhengwei Yin
    Siqing Gan
    Advances in Difference Equations, 2015
  • [6] Balanced-Euler Approximation Schemes for Stiff Systems of Stochastic Differential Equations
    Ranjbar, Hassan
    Torkzadeh, Leila
    Nouri, Kazem
    FILOMAT, 2022, 36 (18) : 6791 - 6804
  • [7] Balanced-Euler Approximation Schemes for Stiff Systems of Stochastic Differential Equations
    Ranjbar, Hassan
    Torkzadeh, Leila
    Nouri, Kazem
    FILOMAT, 2022, 36 (19) : 6791 - 6804
  • [8] The fully implicit stochastic-α method for stiff stochastic differential equations
    Ahmad, Sk. Safique
    Parida, Nigam Chandra
    Raha, Soumyendu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (22) : 8263 - 8282
  • [9] EXPLICIT STABILIZED MULTIRATE METHOD FOR STIFF STOCHASTIC DIFFERENTIAL EQUATIONS
    Abdulle, Assyr
    de Souza, Giacomo Rosilho
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : A1859 - A1883
  • [10] The approximate Euler method for Levy driven stochastic differential equations
    Jacod, J
    Kurtz, TG
    Méléard, S
    Protter, P
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03): : 523 - 558