Neurological diseases represent a spectrum of complex disorders characterized by degradation of nerve cells or nerve tissue within the nervous system. Currently, optimal therapeutic interventions for neurological diseases as a significant threat to human health are lacking. Electrospinning, as a widely used nanotechnology methos, is capable of producing a wide range of micro- and nano-structures with the excellent structure, high specific surface area, and superior drug loading capacity. It also provides the solution properties including viscosity, elasticity, conductivity, and surface tension. The improvements of electrospinning devices can be achieved by controlling variables including voltage, zeta potential, distance between electrospinning nozzle and the collector, and also, environmental parameters including temperature and humidity. Hence, electrospinning could mimic the complex neural tissue structure, regulate the behavior of neuronal cells, and even deliver the drugs across the blood-brain barrier, showing excellent application prospects in neurological diseases. In this review, we summarize the recent improvements of electrospinning and the recent applications of electrospinning in neurological diseases, hoping that it may provide the valuable insights for researchers in the field of nanomaterials.