DFME: A New Benchmark for Dynamic Facial Micro-Expression Recognition

被引:0
|
作者
Zhao, Sirui [1 ,2 ]
Tang, Huaying [1 ,3 ]
Mao, Xinglong [3 ]
Liu, Shifeng [3 ]
Zhang, Yiming [3 ]
Wang, Hao [3 ]
Xu, Tong [3 ]
Chen, Enhong [3 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Anhui, Peoples R China
[2] Southwest Univ Sci & Technol, Sch Comp Sci & Technol, Mianyang 621010, Peoples R China
[3] Univ Sci & Technol China, Sch Data Sci, Hefei 230027, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Databases; Videos; Psychology; Face recognition; Computer science; Spatiotemporal phenomena; Representation learning; Emotion recognition; facial micro-expression; facial action units; micro-expression recognition; databases; OPTICAL-FLOW; INFORMATION;
D O I
10.1109/TAFFC.2023.3341918
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most important subconscious reactions, micro-expression (ME), is a spontaneous, subtle, and transient facial expression that reveals human beings' genuine emotion. Therefore, automatically recognizing ME (MER) is becoming increasingly crucial in the field of affective computing, providing essential technical support for lie detection, clinical psychological diagnosis, and public safety. However, the ME data scarcity has severely hindered the development of advanced data-driven MER models. Despite the recent efforts by several spontaneous ME databases to alleviate this problem, there is still a lack of sufficient data. Hence, in this paper, we overcome the ME data scarcity problem by collecting and annotating a dynamic spontaneous ME database with the largest current ME data scale called DFME (Dynamic Facial Micro-expressions). Specifically, the DFME database contains 7,526 well-labeled ME videos spanning multiple high frame rates, elicited by 671 participants and annotated by more than 20 professional annotators over three years. Furthermore, we comprehensively verify the created DFME, including using influential spatiotemporal video feature learning models and MER models as baselines, and conduct emotion classification and ME action unit classification experiments. The experimental results demonstrate that the DFME database can facilitate research in automatic MER, and provide a new benchmark for this field.
引用
收藏
页码:1371 / 1386
页数:16
相关论文
共 50 条
  • [1] A survey: facial micro-expression recognition
    Madhumita Takalkar
    Min Xu
    Qiang Wu
    Zenon Chaczko
    Multimedia Tools and Applications, 2018, 77 : 19301 - 19325
  • [2] Facial Feedback and Micro-Expression Recognition
    Guo, Hui
    He, Lingling
    Wu, Qi
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2016, 51 : 542 - 542
  • [3] A survey: facial micro-expression recognition
    Takalkar, Madhumita
    Xu, Min
    Wu, Qiang
    Chaczko, Zenon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (15) : 19301 - 19325
  • [4] Micro-expression spotting: A new benchmark
    Tran, Thuong-Khanh
    Vo, Quang-Nhat
    Hong, Xiaopeng
    Li, Xiaobai
    Zhao, Guoying
    NEUROCOMPUTING, 2021, 443 : 356 - 368
  • [5] Multimodal Attention Dynamic Fusion Network for Facial Micro-Expression Recognition
    Yang, Hongling
    Xie, Lun
    Pan, Hang
    Li, Chiqin
    Wang, Zhiliang
    Zhong, Jialiang
    ENTROPY, 2023, 25 (09)
  • [6] Cross-Database Micro-Expression Recognition: A Benchmark
    Zhang, Tong
    Zong, Yuan
    Zheng, Wenming
    Chen, C. L. Philip
    Hong, Xiaopeng
    Tang, Chuangao
    Cui, Zhen
    Zhao, Guoying
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (02) : 544 - 559
  • [7] Cross-Database Micro-Expression Recognition: A Benchmark
    Zong, Yuan
    Zheng, Wenming
    Hong, Xiaopeng
    Tang, Chuangao
    Cui, Zhen
    Zhao, Guoying
    ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2019, : 354 - 363
  • [8] The effect of facial attractiveness on micro-expression recognition
    Lin, Qiongsi
    Dong, Zizhao
    Zheng, Qiuqiang
    Wang, Su-Jing
    FRONTIERS IN PSYCHOLOGY, 2022, 13
  • [9] Micro-expression recognition from local facial regions
    Aouayeb, Mouath
    Hamidouche, Wassim
    Soladie, Catherine
    Kpalma, Kidiyo
    Seguier, Renaud
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 99
  • [10] Facial micro-expression recognition: A machine learning approach
    Adegun, Iyanu Pelumi
    Vadapalli, Hima Bindu
    SCIENTIFIC AFRICAN, 2020, 8