III-V technology developments addressing a high operating temperature at LYNRED

被引:0
|
作者
Pere-Laperne, N. [1 ]
Brunner, A. [1 ]
Dagher, G. [1 ]
Saintoyant, A. [1 ]
Morisset, N. [1 ]
Rubaldo, L. [1 ]
Coussement, J. [1 ]
Evirgen, A. [2 ]
Reverchon, J-L [2 ]
Simozrag, B. [2 ]
Garcia, M. [2 ]
Gerard, B. [2 ]
Cervera, C. [3 ]
Gravrand, O. [3 ]
机构
[1] LYNRED, Actipole CS 10021,364 Route Valence, F-38113 Veurey Voroize, France
[2] III Lab, Campus Polytech,1 Ave Augustin Fresnel, F-91767 Palaiseau, France
[3] CEA LETT, MINATEC Campus,17 Rue Martyrs, F-38054 Grenoble 9, France
来源
关键词
III-V material; MWIR blue; MWIR red; HOT; VGA format; SXGA format; MTF; RFPN;
D O I
10.1117/12.3014159
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lynred is leading the development of infrared detectors for high performances applications. Two trends are identified in the infrared range, the increase of the operating temperature and the pixel pitch reduction. For 15 years, the III-V technologies present an increasing interest to address both challenges. At LYNRED, these technologies allow to address Short Wave InfraRed (SWIR) and Mid-Wave InfraRed (MWIR) for ground applications. Many challenges have to be addressed for the future focal plane arrays (FPAs). Electrical and optical crosstalks as well as image quality and stability, are one of the prime concern for detectors with pixel pitch down to 7.5 mu m. In order to reach an industrial production level of infrared FPAs, technological developments are required at each steps: the epitaxy, the detector array process, flip chip and back end processing. Another key element is the Read Out Integrated Circuit (ROIC) designed in-house to fulfil our customer needs. We review the latest developments at LYNRED on III-V technologies, in terms of operability, residual fixed pattern noise (RFPN) and Modulation Transfer Function (MTF) optimizations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] NEW DEVELOPMENTS IN III-V TRANSISTOR TECHNOLOGY
    RYUZAN, O
    MISUGI, T
    PHYSICA B & C, 1983, 117 (MAR): : 50 - 54
  • [2] Advances in III-V Bulk and Superlattice-based High Operating Temperature MWIR Detector Technology
    Sharifi, H.
    Roebuck, M.
    Terterian, S.
    Jenkins, J.
    Tu, B.
    Strong, W.
    De Lyon, T. J.
    Rajavel, R. D.
    Caulfield, J.
    Curzan, J. P.
    INFRARED TECHNOLOGY AND APPLICATIONS XLIII, 2017, 10177
  • [3] NEW DEVELOPMENTS IN III-V TRANSISTOR TECHNOLOGY.
    Ryuzan, Osamu
    Misugi, Takahiko
    1600, (117-118):
  • [4] High mobility III-V MOSFET technology
    Passlack, M.
    Droopad, R.
    Rajagopalan, K.
    Abrokwah, J.
    Zurcher, P.
    Fejes, P.
    IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM - 2006 IEEE CSIC SYMPOSIUM, TECHNICAL DIGEST 2006, 2006, : 39 - 42
  • [5] III-V MATERIALS TECHNOLOGY
    WOODALL, JM
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (03) : C102 - C102
  • [6] III-V semiconductor properties for high temperature electronics
    Hartnagel, Hans L., 1600, Elsevier Science S.A., Lausanne, Switzerland (B29): : 1 - 3
  • [7] HIGH-TEMPERATURE PLASTICITY OF III-V SEMICONDUCTORS
    ZOZIME, A
    CASTAING, J
    STRUCTURE AND PROPERTIES OF DISLOCATIONS IN SEMICONDUCTORS 1989, 1989, 104 : 339 - 348
  • [8] HIGH-TEMPERATURE PLASTICITY OF III-V SEMICONDUCTORS
    ZOZIME, A
    CASTAING, J
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1989, (104): : 339 - 348
  • [9] III-V compounds for high-temperature operation
    Hartnagel, HL
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 46 (1-3): : 47 - 51
  • [10] High temperature surface degradation of III-V nitrides
    Vartuli, CB
    Pearton, SJ
    Abernathy, CR
    MacKenzie, JD
    Lambers, ES
    Zolper, JC
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (06): : 3523 - 3531