Algebraic solitons in the massive Thirring model

被引:1
|
作者
Han, Jiaqi [1 ]
He, Cheng [2 ]
Pelinovsky, Dmitry E. [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
关键词
ORBITAL STABILITY; EQUATION;
D O I
10.1103/PhysRevE.110.034202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present exact solutions describing dynamics of two algebraic solitons in the massive Thirring model. Each algebraic soliton corresponds to a simple embedded eigenvalue in the Kaup-Newell spectral problem and attains the maximal mass among the family of solitary waves traveling with the same speed. By coalescence of speeds of the two algebraic solitons, we find a new solution for an algebraic double-soliton which corresponds to a double embedded eigenvalue. We show that the double-soliton attains the double mass of a single soliton and describes a slow interaction of two identical algebraic solitons.
引用
收藏
页数:11
相关论文
共 50 条