Predicting mode-locked fiber laser output using a feed-forward neural network

被引:0
|
作者
Liu, Xinyang [1 ]
Gumenyuk, Regina [1 ,2 ]
机构
[1] Tampere Univ, Lab Photon, Korkeakoulunkatu 3, Tampere 33720, Finland
[2] Tampere Univ, Tampere Inst Adv Study, Kalevantie 4, Tampere 33100, Finland
来源
OPTICS CONTINUUM | 2024年 / 3卷 / 09期
关键词
SUPERCONTINUUM GENERATION; PULSE;
D O I
10.1364/OPTCON.531790
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
With a great ability to solve regression problems, the artificial neural network has become a powerful tool for advancing ultrafast laser research. In this work, we demonstrate the capability of a feed-forward neural network (FNN) to predict the output parameters of a mode-locked fiber laser, which mutually depend on multiple intracavity parameters, with high speed and accuracy. A direct mapping between cavity parameters and laser output is realized through the FNN-trained models, bypassing tedious iterative numerical simulation as a common approach to get a converged solution for a laser cavity. We show that the laser output spectrum and temporal pulse profiles can be accurately predicted with the normalized root mean square error (NRMSE) of less than 0.04 within only a 5 ms time frame for scenarios inside and outside the training data. We investigate the influence of FNN configuration on prediction performance. Both gain and spectral filter parameters are explored to test the prediction capability of the trained FNN models at high speed. Straightforward and fast prediction of the laser output performance from varying laser intracavity parameters paves the way to intelligent short-pulsed lasers with inversed design or autonomous operation maintenance.
引用
收藏
页码:1652 / 1659
页数:8
相关论文
共 50 条
  • [1] ACTIVELY MODE-LOCKED FIBER LASER WITH PULSE INTENSITY FEED-FORWARD
    Yin, Feifei
    Wang, Ruixin
    Dai, Yitang
    Li, Jianqiang
    Xu, Kun
    [J]. 2014 13TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2014,
  • [2] Soliton generation from a fundamentally mode-locked fiber laser with a feed-forward path
    Wang, Ruixin
    Dai, Yitang
    Yin, Feifei
    Xu, Kun
    Li, Jianqiang
    Lin, Jintong
    [J]. LASER PHYSICS LETTERS, 2014, 11 (08)
  • [3] Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward
    Wang, Ruixin
    Xu, Kun
    Dai, Yitang
    Yin, Feifei
    Li, Jianqiang
    Ji, Yuefeng
    Lin, Jintong
    [J]. 2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [4] Towards intelligent fiber laser design by using a feed-forward neural network
    Liu, Xinyang
    Gumenyuk, Regina
    [J]. ADVANCED LASERS, HIGH-POWER LASERS, AND APPLICATIONS XIV, 2023, 12760
  • [5] Predicting terrain contours using a feed-forward neural network
    Erwin-Wright, S
    Sanders, D
    Chen, S
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2003, 16 (5-6) : 465 - 472
  • [6] Numerical investigation of a feed-forward linewidth reduction scheme using a mode-locked laser model of reduced complexity
    O'Duill, Sean
    Sahni, M. Omar
    Trebaol, Stephane
    Landais, Pascal
    Bramerie, L.
    Murdoch, Stuart G.
    Besnard, Pascal
    Barry, Liam P.
    [J]. APPLIED OPTICS, 2018, 57 (22) : E89 - E100
  • [7] Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM
    Xu, Kun
    Wang, Ruixin
    Dai, Yitang
    Yin, Feifei
    Li, Jianqiang
    Ji, Yuefeng
    Lin, Jintong
    [J]. LASER PHYSICS LETTERS, 2013, 10 (05)
  • [8] Frequency noise reduction performance of a feed-forward heterodyne technique: application to an actively mode-locked laser diode
    Sahni, Mohamed Omar
    Trebaol, Stephane
    Bramerie, Laurent
    Joindot, Michel
    Duill, Sean P. O.
    Murdoch, Stuart G.
    Barry, Liam P.
    Besnard, Pascal
    [J]. OPTICS LETTERS, 2017, 42 (19) : 4000 - 4003
  • [9] Spectral linewidth reduction of single-mode and mode-locked lasers using a feed-forward heterodyne detection scheme
    Watts, Regan T.
    Murdoch, Stuart G.
    Barry, Liam P.
    [J]. 2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [10] Enhancing the Output Characteristics of a Photovoltaic Position Sensor Using a Feed-Forward Neural Network
    Agee, J. T.
    Masupe, S.
    Jeffrey, M.
    Jimoh, A. A.
    [J]. ADVANCES IN MATERIALS AND SYSTEMS TECHNOLOGIES II, 2009, 62-64 : 506 - +