Enhancing intrusion detection performance using explainable ensemble deep learning

被引:0
|
作者
Ncir, Chiheb Eddine Ben [1 ]
Hajkacem, Mohamed Aymen Ben [2 ]
Alattas, Mohammed [1 ]
机构
[1] Univ Jeddah, Coll Business, MIS Dept, Jeddah, Saudi Arabia
[2] Univ Tunis, ISG Tunis, LARODEC Lab, Tunis, Tunisia
关键词
Intrusion detection; Deep learning; Interpretable machine learning; Explainable machine learning; LSTM-based algorithms; Ensemble learning; NEURAL-NETWORK;
D O I
10.7717/peerj-cs.2289
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the exponential growth of available data in large networks, the need for an accurate and explainable intrusion detection system has become of high necessity to effectively discover attacks in such networks. To deal with this challenge, we propose a two-phase Explainable Ensemble deep learning-based method (EED) for intrusion detection. In the first phase, a new ensemble intrusion detection model using three one-dimensional long short-term memory networks (LSTM) is designed for an accurate attack identification. The outputs of three classifiers are aggregated using a meta-learner algorithm resulting in refined and improved results. In the second phase, interpretability and explainability of EED outputs are enhanced by leveraging the capabilities of SHape Additive exPplanations (SHAP). Factors contributing to the identification and classification of attacks are highlighted which allows security experts to understand and interpret the attack behavior and then implement effective response strategies to improve the network security. Experiments conducted on real datasets have shown the effectiveness of EED compared to conventional intrusion detection methods in terms of both accuracy and explainability. The EED method exhibits high accuracy in accurately identifying and classifying attacks while providing transparency and interpretability.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Enhancing intrusion detection performance using explainable ensemble deep learning
    Ben Ncir, Chiheb Eddine
    Ben HajKacem, Mohamed Aymen
    Alattas, Mohammed
    PeerJ Computer Science, 2024, 10
  • [2] An Explainable Ensemble Deep Learning Approach for Intrusion Detection in Industrial Internet of Things
    Shtayat, Mousa'B Mohammad
    Hasan, Mohammad Kamrul
    Sulaiman, Rossilawati
    Islam, Shayla
    Khan, Atta Ur Rehman
    IEEE ACCESS, 2023, 11 : 115047 - 115061
  • [3] An Explainable and Optimized Network Intrusion Detection Model using Deep Learning
    Haripriya, C.
    Jagadeesh, M. P. Prabhudev
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 482 - 488
  • [4] Ensemble-Based Deep Learning Models for Enhancing IoT Intrusion Detection
    Odeh, Ammar
    Abu Taleb, Anas
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [5] Enhancing Intrusion Detection System Using Machine Learning and Deep Learning
    Madhusudhan, R.
    Thakur, Shubham Kumar
    Pravisha, P.
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 3, AINA 2024, 2024, 201 : 326 - 337
  • [6] Enhancing System Security by Intrusion Detection Using Deep Learning
    Sama, Lakshit
    Wang, Hua
    Watters, Paul
    DATABASES THEORY AND APPLICATIONS (ADC 2022), 2022, 13459 : 169 - 176
  • [7] Consensus hybrid ensemble machine learning for intrusion detection with explainable AI
    Ahmed, Usman
    Jiangbin, Zheng
    Khan, Sheharyar
    Sadiq, Muhammad Tariq
    Journal of Network and Computer Applications, 2025, 235
  • [8] X-DeepID: An Explainable Hybrid Deep Learning Method for Enhancing IoT Security with Intrusion Detection
    Bhagat, Gautam
    Mishra, Khushboo
    Dutta, Tanima
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, PT 1, ICSOFTCOMP 2023, 2024, 2030 : 42 - 53
  • [9] Enhancing Ensemble Learning Using Explainable CNN for Spoof Fingerprints
    Reza, Naim
    Jung, Ho Yub
    SENSORS, 2024, 24 (01)
  • [10] Explainable Anomaly and Intrusion Detection Intelligence for Platform Information Technology Using Dimensionality Reduction and Ensemble Learning
    Morris, Brian
    2019 IEEE AUTOTESTCON, 2019,